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Abstract—Many real-world systems such as the WWW, Semantic Web,
logical expressions, and social networks can be represented in graphical
forms. This paper studies compressing graphical structures from a graph
entropy point of view. We show that structural entropy is equal to the
chromatic entropy of the characteristic graph, termed the structural
characteristic graph. We establish the relation between structural entropy
and graph entropy, and investigate the cases when (conditional) graph
entropy is equal to (conditional) chromatic entropy.

I. INTRODUCTION

Graph compression is becoming increasingly important in a variety
of fields including semantic networks, knowledge representation,
logic programming, and social media analyses. In effect, many real-
world applications can be represented in graphical forms, including
the world wide web, logical expressions, and semantic graphs with
RDF descriptions.

The need for efficient representations of graphical structures arises
in many different contexts and problems. Shannon identified a graph
invariant to study the zero-error capacity of a communication channel
in [1], which is upper bounded by the Lovász number [2]. This
measures the independence number of a higher-order strong-product
of a characteristic graph. Graph entropy has been introduced in [3]
to study lossless compression limits for sources with ambiguous
alphabets. Since then, it has been applied to areas such as sorting with
partial information [4], and bounding the size of Boolean formulae
[5], [6]. Conditional graph entropy has emerged as a functional
compression counterpart of graph entropy in [7], in which the decoder
computes a function of the source symbol and the side information
available to the receiver. Various entropy metrics to study graph
properties have been studied in [8], [9].

Chromatic entropy is defined in [10] to investigate compression
bounds for communicating single and multiple input descriptions with
zero error in the presence of side information. Chromatic entropy
requires one to determine the minimum entropy coloring of a given
characteristic graph. Finding the minimum entropy coloring of a
graph is known to be NP-hard in the general case [11]. On the
other hand, in a family of graphs studied in [12], minimum entropy
coloring can be determined in polynomial time. Graph entropy serves
as a lower bound to chromatic entropy [10]. The difference between
chromatic and graph entropies can be arbitrarily large [11].

We consider compressing random graphs up to an isomorphism.
We define the structural characteristic graph in which each node
represents a distinct labeled graph, and two nodes are connected
if and only if they correspond to different graph structures. We
show that structural entropy is equal to the chromatic entropy of
this graph. We show that for graphs with non-overlapping fully
connected maximal independent sets, chromatic entropy is equal to
graph entropy. Accordingly, coloring a higher-order graph provides
the same gains as coloring the first-order graph and then extending
the color alphabet.

This research is sponsored by the U.S. Army Research Laboratory under
the Network Science Collaborative Technology Alliance, Agreement Number
W911NF-09-2-0053.

II. SYSTEM MODEL

Consider a random graph G that entails a probability distribution
over graphs with κ vertices. Define the set G = {G1, G2, . . . , Gm}
of all distinct labeled graphs, where m = 2(κ2). Among these m
graphs, the probability of graph indexed by i, i.e., Gi, is given by
p(Gi). We assume that p(Gi) > 0 for i = 1, . . . ,m, i.e., each graph
has a strictly positive probability.

Definition 1. (Graph Isomorphism) [13] Two graphs G1 = (V1, E1)
and G2 = (V2, E2) are isomorphic if there exist bijections f : V1 →
V2 and h : E1 → E2 that preserve the adjacency and non-adjacency
relations. For every edge e = (u, v) ∈ E1 such that u, v ∈ V1,
an edge (f(u), f(v)) = g(e) ∈ E2 exists where f(u), f(v) ∈ V2.
Accordingly, (u, v) /∈ E1 → (f(u), f(v)) /∈ E2 for u, v ∈ V1.
Isomorphic graphs are represented by G1

∼= G2.

Lemma 1. [13] Define G1 = (V1, E1), G2 = (V2, E2) and G3 =
(V3, E3) such that G1

∼= G2 and G2
∼= G3. Then, G1

∼= G3.

Denote an unlabeled variant of G by S, for which the vertices
are no longer distinct. S is called the random structure model of G.
Two labeled graphs Gi and Gj with i 6= j have the same structure
if their unlabeled versions refer to the same (unlabeled) graph. The
probability of a structure S is

P (S) =
∑

Gi∈G,Gi∼=S
i=1,...,m

P (Gi). (1)

Structural entropy is then defined as HS = −
∑
S∈S P (S) logP (S)

with P (S) given in (1), and where S is the set of all distinct structures
[14], [15].

III. THE RELATION BETWEEN STRUCTURAL AND CHROMATIC
ENTROPIES

We first introduce a special characteristic graph, [1], [16], to study
structural properties.

Definition 2. (Structural Characteristic Graph) Define a graph
Γ = (V,E) in which vertex i ∈ V represents graph Gi ∈ G where
i = 1, . . . ,m. Assign each vertex a probability p(i) = p(Gi). We
have edge (i, j) ∈ E if and only if there exists no structure S ∈ S
such that Gi ∼= S and Gj ∼= S.

Each independent set of Γ represents a distinct unlabeled graph,
which corresponds to labeled graphs with an identical structure.

Lemma 2. The maximal independent sets of Γ do not overlap and
are fully connected 2.

Proof. We show by contradiction that maximal independent sets of
Γ cannot overlap, using [12]. Define W(Γ) as the set of all maximal
independent sets of Γ. Let w1, w2 ∈ W(Γ) denote distinct maximal
independent sets with a common element v in both sets. Let u and

2Our fully connected definition states that every node in a maximal
independent set is connected to all the other maximal independent sets.
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z be a pair of vertices so that u ∈ w1 and z ∈ w2 with an edge in
between. Note that since w1 and w2 correspond to distinct, maximal
independent sets, we can always find at least one such pair. Suppose
w1 ∩ w2 6= ∅, we can always find a node v such that v ∈ w1 ∩ w2.
Let Gu, Gv, Gz ∈ G be the graphs represented by nodes u, v, z ∈ V ,
respectively.

As both u and v are elements of w1, there exists no edge between
the two vertices. From Definition 2, Gu ∼= Gv ∼= S for some S ∈ S,
i.e., u and v correspond to graphs with the same structure. Similarly,
both v and z are in w2, hence no edge exists between the two in
Γ. As a result, v and z represent graphs with the same structure, or
Gv ∼= Gz ∼= S′ for some S′ ∈ S. But from Lemma 1, Gu ∼= Gv and
Gv ∼= Gz means that Gu ∼= Gz , hence S′ is an automorphism to S,
in other words, the two refer to the same unlabeled graph (structure).
Thus, no edge should exists between u and z according to Definition
2. On the other hand, by the choice of the pair u and z described
above, there exists an edge between the two vertices. This in turn
proves the first part of our statement.

Next, by contradiction, we show that maximal independent sets
are fully connected. Consider two distinct non-overlapping maximal
independent sets w1 and w2. Assume that there exists a node z ∈ w2

connected to u ∈ w1 but is not connected to v ∈ w1. Let Gz, Gu, Gv
represent the graphs for nodes z, u, v, respectively. Since u, v ∈ w1,
they have the same structure, i.e., Gu ∼= Gv ∼= S for some S ∈ S.
As z is not connected to v, Gz and Gv have the same structure, i.e.,
Gz ∼= Gv ∼= S′ for some S′ ∈ S. From Lemma 1, Gu ∼= Gz , or
S ∼= S′. However, as z is connected to u, the two cannot have the
same structure, leading to a contradiction.

Corollary 1. Consider a characteristic graph with non-overlapping
fully connected maximal independent sets. Then, each vertex can
belong to a single maximal independent set.

Each labeled graph can belong to a single structure. Let X be a
random variable over V with probabilities of the labeled graphs in
G. Define c(·) as a coloring function c : V → C. The entropy of c(·)
is

H(c(X)) =
∑
λ∈c(Γ)

p(c−1(λ)) log
1

p(c−1(λ))
(2)

where c−1(λ) is the set of vertices assigned to λ. The probability of a
set is the sum of the probabilities of its elements [10]. The chromatic
entropy of Γ,

Hχ
Γ (X) = min

c is a coloring of Γ
H(c(X)), (3)

is achieved through the coloring with the minimum entropy [10].

Lemma 3. Minimum entropy coloring of Γ is obtained by assigning
a distinct color to each maximal independent set.

Proof. Since the maximal independent sets of Γ are non-overlapping
and fully connected, a color assigned to a vertex in one maximal
independent set cannot be re-used for another vertex from a different
maximal independent set, hence the colors used for different maximal
independent sets should be distinct. Let w be a maximal independent
set colored with a single color λ. Then, the impact of w on the
entropy in (2) is given by

−p(c−1(λ)) log p(c−1(λ)) = −
∑
v∈w

p(v) log

(∑
v∈w

p(v)

)
. (4)

Consider any non-empty k-partitioning of w such that w = w1 ∪
w2 . . .∪wk. Assume that the vertices in w1, w2, . . . , wk are colored
with colors λ1, λ2, . . . , λk, respectively. Then, the impact of the

vertices in w on the entropy (2) is

−
k∑
i=1

p(c−1(λi)) log p(c−1(λi))=−
k∑
i=1

∑
v∈wi

p(v) log
(∑
v∈wi

p(v)
)

(5)

It follows from (4) and (5) that

−
∑
v∈w

w=w1∪...∪wk

p(v) log
(∑
v∈w

p(v)
)

= −
k∑
i=1

∑
v∈wi

p(v) log
(∑
v∈w

p(v)
)

(6)

≤ −
k∑
i=1

∑
v∈wi

p(v) log
( ∑
v∈wi

p(v)
)

(7)

where in the latter we used the fact that w1, w2, . . . , wk ⊂ w and∑
v∈w

p(v) >
∑
v∈wi

p(v) (8)

where
0 ≤

∑
v∈w

p(v),
∑
v∈wi

p(v) ≤ 1 (9)

for i = 1, . . . , k. Therefore, minimum entropy is achieved by using
a unique color for each maximal independent set.

Theorem 1. The structural entropy of G is equal to the chromatic
entropy of Γ

HS = Hχ
Γ (X). (10)

Proof. From Lemma 3, chromatic entropy is achieved by assigning
a different color to each of the maximal independent sets. As each
maximal independent set represents a unique graph structure, we can
define a bijection from the colors in C to the structures in S. Assume
that color λ ∈ C corresponds to structure S ∈ S. Then,

p(λ) = p(c−1(λ)) =
∑
c(i)=λ
i∈V

p(i) =
∑
Gi∼=S

p(Gi) (11)

and
p(S) = p(λ) =

∑
Gi∼=S

p(Gi). (12)

Then (10) follows from comparing HS and (2) by using (12) and (11).
From Lemma 3, we know that this assignment achieves (3).

Graph entropy [3] is a lower bound for the lossless compression
of graph structures

HΓ(X) = min
X∈W∈W(Γ)

I(W ;X) (13)

W is a random variable defined over W(Γ). X ∈ W indicates that
the joint distribution q(w, x) on W(Γ)×X is such that q(w, x) > 0
implies x ∈ w.

Lemma 4. [10] Let Γn denote the nth-order OR-product of Γ. Then,

lim
n→∞

1

n
Hχ

Γn(X) = HΓ(X). (14)

where the OR-product Γn = (V n, En) has a vertex set V n. Consider
two vertices x = (x1, . . . , xn) and x′ = (x′1, . . . , x

′
n) such that

x,x′ ∈ V n. An edge (x,x′) ∈ En is defined if and only if there
exists an edge (xi, x

′
i) such that xi, x′i ∈ V for some i = 1, . . . , n.

IV. CASES WHERE GRAPH ENTROPY IS EQUAL TO CHROMATIC
ENTROPY

In this section, we establish the relation between chromatic entropy
and graph entropy and study the cases when the two are equal.
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Theorem 2. Consider a characteristic graph GX with a random
variable X ∼ p(x) defined over a set of vertices X . If the maximal
independent sets of GX are non-overlapping and fully connected,
its chromatic entropy is equal to its graph entropy. Hence, coloring
GX can achieve the same compression performance as coloring its
nth-order OR-product counterpart GnX .

Proof. We first consider from [3]

I(W ;X) =
∑
x∈X

∑
w:x∈w∈W(GX )

q(x,w) log
q(x,w)

p(x)q(w)
(15)

where q(x,w) > 0 implies that x ∈ w such that∑
w:x∈w

q(x,w) = p(x). (16)

The marginal distribution of w is

q(w) =
∑
x:x∈w

q(x,w). (17)

We know from Lemma 1 that, each vertex in a characteristic graph
with non-overlapping fully connected maximal independent sets can
belong to a single maximal independent set. Let x belong to w∗ ∈
W(GX). Then, {w : x ∈ w ∈ W(GX)} = w∗. It follows from (16)∑

w:x∈w

q(x,w) = q(x,w∗) = p(x) (18)

whereas the marginal distribution of w∗ is

q(w∗) =
∑

x:x∈w∗
q(x,w∗) =

∑
x:x∈w∗

p(x). (19)

From Lemma 2, maximal independent sets define a partition of
the vertices in X . Moreover, the random variable representing each
maximal independent set has the joint and marginal probability
distributions (18) and (19). Then (15) can be written as

I(W ;X) = −
∑
x∈X

∑
w:x∈w∈W(GX )

q(x,w) log
p(x)q(w)

q(x,w)
(20)

= −
∑
x∈X

p(x) log

p(x)(
∑
x′:x′∈w
w:x∈w

p(x′))

p(x)
(21)

= −
∑

w∈W(GX )

( ∑
x:x∈w

p(x)

)
log

( ∑
x′:x′∈w

p(x′)

)
(22)

= −
∑
λ∈C

p(λ) log p(λ) (23)

where (22) since there is only a single w per x, and (22) follows from
the fact that {x : x ∈ w} is a disjoint set for each w ∈ W(GX).
In (23), we assigned a distinct color to every maximal independent
set in (22), with each color having a probability equal to the sum of
the vertex probabilities of the maximal independent set. Let λ be the
color assigned to w∗. Then,

p(λ) =
∑

x:c(x)=λ

p(x) =
∑

x:x∈w∗
p(x) (24)

where |C| = |W(GX)|. We know from Lemma 3 that assigning a
distinct color to each maximal independent set, i.e., (23), achieves
the chromatic entropy in (3). Since each vertex belongs to a single
maximal independent set, it can be observed that (22) is equal to
(13). Therefore, chromatic entropy is equal to graph entropy.

Graphs with non-overlapping fully connected maximal independent
sets are complete k-partite graphs where k is the number of maximal
independent sets. Graph entropy of a complete k-partite graph is

known to be equal to the graph entropy of a complete graph on
k vertices, in which each vertex represents a maximal independent
set [17]. As the new graph is complete, its graph entropy is equal
to the entropy of a random variable whose distribution consists
of probabilities equal to those of the new vertices. Because graph
entropy is achieved by assigning a distinct color to each maximal
independent set, for complete k-partite graphs, graph entropy is equal
to chromatic entropy. Hence, minimum entropy coloring can be done
over the first-order graph instead of the product graph.

Theorem 3. For the lossless compression of graphical structures,
graph entropy is equal to chromatic entropy and structural entropy.

Proof. The proof follows the lines in Theorem 2 by lettingGX denote
Γ. Note that each vertex in Γ represents a labeled graph. The receiver
wants to determine the structure of x, which corresponds to vertices
that need to be distinguished from one another.

V. CONDITIONAL GRAPH AND CHROMATIC ENTROPIES OF
COMPLETE MULTIPARTITE CHARACTERISTIC GRAPHS

This section considers the characteristic graphs for functional
compression, and studies the relationship between conditional graph
entropy and conditional chromatic entropy. Consider X,Y ∼ p(x, y)
and a function f(x, y) such that x ∈ X and y ∈ Y . Define
GX = (V,E) with a vertex set V = X , in which an edge (x, x′) ∈ E
exists if and only if there exists y ∈ Y such that p(x, y), p(x′, y) ≥ 0
and f(x, y) 6= f(x′, y). We show that for the scenarios discussed in
[12], conditional chromatic entropy of GX ,

Hχ
GX

(X|Y ) = min
c is a coloring ofGX

H(c(X)|Y ), (25)

is equal to its conditional graph entropy HGX (X|Y ). We will need
the following lemma to prove (25).

Lemma 5. Conditional chromatic entropy of a k-partite graph GX
is achieved by assigning a single distinct color to each partition.

Proof. Every pair of vertices in different partitions of GX is adjacent,
hence a color that is assigned to any vertex in one partition cannot
be reused to color vertices from other partitions. Therefore, each
partition should receive at least one distinct color. Let c(·) be an
arbitrary valid coloring of GX with a conditional entropy of

H(c(X)|Y ) =
∑
y∈Y

∑
λ∈c(GX )

p(y)p(c−1(λ)|y) log
1

p(c−1(λ)|y)

(26)

= −
∑
y∈Y

p(y)
∑

λ∈c(GX )

p(c−1(λ)|y) log p(c−1(λ)|y) (27)

where
p(c−1(λ)|y) =

∑
x:c(x)=λ

p(x|y). (28)

Each of the k vertex partitions in a complete k-partite graph is equal
to a maximal independent set w ∈ W(GX). Let w denote such a
partition. Assume that every x ∈ w is assigned to color λw. Then
the contribution of λw on the conditional entropy in (27) is

−p(c−1(λw)|y) log p(c−1(λw)|y)

= −
∑

x:c(x)=λw

p(x|y) log

( ∑
x:c(x)=λw

p(x|y)

)
.

(29)

Note that w = {x : c(x) = λw} is the set of vertices assigned
to λw. Consider any partitioning of the vertices in w. Assume that
the number of partitions is r, where 1 ≤ r ≤ |w| such that w =
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w1 ∪ w2 ∪ . . . ∪ wr where wi denotes the ith partition. Assign a
distinct color λi to each partition wi. The impact of this partitioning
on the conditional entropy in (27) is

−
r∑
i=1

p(c−1(λi)|y) log p(c−1(λi)|y)

= −
r∑
i=1

∑
x∈wi

p(x|y) log

( ∑
x∈wi

p(x|y)

)
.

(30)

From (29), we have

−
∑

x:c(x)=λw

p(x|y) log
( ∑
x:c(x)=λw

p(x|y)
)

(31)

= −
∑

x∈w1∪w2∪...∪wr

p(x|y) log
( ∑
x∈w1∪w2∪...∪wr

p(x|y)
)

(32)

= −
r∑
i=1

∑
x∈wi

p(x|y) log
( ∑
x∈w1∪w2∪...∪wr

p(x|y)
)

(33)

≤ −
r∑
i=1

∑
x∈wi

p(x|y) log
( ∑
x∈wi

p(x|y)
)

(34)

which follows from the fact that wi ⊂ w and∑
x∈w

p(x|y) ≥
∑
x∈wi

p(x|y) (35)

where 0 ≤
∑
x∈w p(x|y) ≤ 1 and 0 ≤

∑
x∈wi p(x|y) ≤ 1 for all

i = 1, . . . , r. Since (34) is true for every w ∈ W(GX),

HXGX (X|Y ) = minH(c(X)|Y ) (36)

= −
∑
y∈Y

p(y)
∑

w∈W(GX )

∑
x:c(x)=λw

p(x|y) log
( ∑
x:c(x)=λw

p(x|y)
)

(37)

which is achieved by assigning a single distinct color to every
maximal independent set, from which Lemma 5 follows.

Theorem 4. Conditional chromatic entropy of a complete multipar-
tite characteristic graph is equal to its conditional graph entropy

HGX (X|Y ) = Hχ
GX

(X|Y ). (38)

For a functional compression problem with a complete multipartite
characteristic graph GX , one can consider the minimum entropy
coloring of GX instead of GnX for which n→∞.

Proof. A multipartite graph, for which every pair of vertices from
different independent sets are connected by an edge, is k-partite for
some k. Let GX be a complete k-partite graph, and Vi denote the
set of vertices in partition i for i = 1, . . . , k. The vertex set can
be represented as V = V1 ∪ V2 ∪ . . . ∪ Vk. It follows that these
partitions are equal to the maximal independent sets of GX , as by
definition every pair of vertices in different partitions are adjacent to
each other, hence an additional vertex violates the independence rule
for any partition. Then W(GX) = {V1, . . . , Vk} and

HGX (X|Y ) = min
W−X−Y

X∈W∈W(GX )={V1,V2,...,Vk}

I(W ;X|Y ) (39)

for which W is a random variable distributed over the set of all
partitions such that ∑

w:x∈w∈W(GX )

p(w|x) = 1, (40)

where by definition of a complete k-partite graph, each vertex belongs
to a single maximal independent set. Let g(x) ∈ W(GX) denote the

independent set x is assigned to. Then,

p(w|x) =

{
1 if w = g(x)
0 o.w. (41)

for all w ∈ W(GX). Note that (41) is the only valid probability
distribution that satisfies (40). Hence, the search space of (39) is
restricted to the membership relations satisfying (41), which assigns
each vertex to the independent set corresponding to its partition. Then,

I(W ;X|Y )

=
∑
y∈Y

∑
x∈X

∑
w:x∈w∈W(GX )

p(y)p(x,w|y) log
p(x,w|y)

p(x|y)p(w|y)
(42)

=
∑
y∈Y

∑
x∈X

∑
w:x∈w∈W(GX )

p(y)p(w|x, y)p(x|y) log
p(w|x, y)p(x|y)

p(x|y)p(w|y)

(43)

=
∑
y∈Y

∑
x∈X

∑
w:x∈w∈W(GX )

p(y)p(w|x)p(x|y) log
p(w|x)∑

x′∈X p(w, x
′|y)

(44)

=
∑
y∈Y

∑
x∈X

∑
w:x∈w∈W(GX )

p(y)p(w|x)p(x|y)log
p(w|x)∑

x′∈X p(w|x′)p(x′|y)

(45)

From (41), we find that∑
x′∈X

p(w|x′)p(x′|y) =
∑
x′∈w

p(x′|y) (46)

Then we can transform (49) into

I(W ;X|Y )

=
∑
y∈Y

∑
x∈X

∑
w:x∈w∈W(GX )

p(y)p(w|x)p(x|y) log
p(w|x)∑

x′∈w p(x
′|y)

(47)

=
∑
y∈Y

p(y)
∑
x∈X

∑
w:x∈w∈W(GX )

p(w|x)p(x|y) log
p(w|x)∑

x′∈w p(x
′|y)

(48)

=
∑
y∈Y

p(y)
∑
x∈X

∑
w:g(x)=w∈W(GX )

p(x|y) log
1∑

x′∈w p(x
′|y)

(49)

= −
∑
y∈Y

p(y)
∑

w∈W(GX )

(∑
x∈w

p(x|y)

)
log

(∑
x′∈w

p(x′|y)

)
(50)

where (49) follows from the fact that each x belongs to a single w
and (50) holds since vertices {x : x ∈ w} form a disjoint set for each
w ∈ W(GX). Since (50) is achieved by the only valid probability
distribution for assigning vertices to maximal independent sets,

HGX (X|Y )=−
∑
y∈Y

p(y)
∑

w∈W(GX )

∑
x∈w

p(x|y) log

(∑
x′∈w

p(x′|y)

)
(51)

By comparing (37) with (50), we have

HGX (X|Y ) = Hχ
GX

(X|Y ) (52)

hence conditional graph entropy is equal to conditional chromatic
entropy.

VI. CONCLUSION

We studied graphical structures through a characteristic graph
model. We established the relations between structural entropy, graph
entropy and chromatic entropy. We investigated the cases in which
(conditional) graph entropy is equal to (conditional) chromatic en-
tropy. Future work includes lossy compression of graphical structures
through graph similarity metrics.
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