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Abstract—A two-way semantic model is considered with two sources
sharing their ideas chosen from different sets of facts. These facts may
be expressed in the form of RDF (Resource Description Framework)
triples. A set of conclusions can be derived by using the logical relations
between these facts. This set of conclusions depends on the current
interest of the network, thus not all combinations of facts lead to a useful
conclusion. Users are interested in sharing only the facts that lead to these
conclusions. Additionally, users do not want to use extra resources for
sharing the facts that lead to the same conclusions. We consider the worst-
case semantic communication performance of this network. We provide
upper and lower bounds for each user to learn useful facts from one
another, and show that increasing the number of rounds of interaction
can improve the worst-case performance over the existing schemes by
reducing the total number of bits transmitted.

Index Terms—Semantic compression, interactive communication, se-
mantic networks.

I. INTRODUCTION

Sources in modern communication networks, humans, computers,
or smart devices, aim at sharing meaningful and useful information,
instead of merely delivering any information and maximizing the
throughput. The impact of the meaning of messages delivered by the
sources have been explored in [1]–[3] by extending the classical infor-
mation theory framework. The communication problem we envision
in this paper is the worst-case data compression performance in a two-
way channel to convey information that leads to useful conclusions,
instead of merely conveying any information. A related work is [5]
which studies the distributed source coding problem to show that
interaction can improve the performance of function computation
by reducing the total rate requirement, as opposed to reconstructing
sources.

We introduce our scheme with the following example. Consider a
network with two persons. The first person has 3 facts represented
by X = {x1, x2, x3}, whereas the second person has 2 facts
Y = {y1, y2}. A single fact is conveyed by each person. Users are
interested in 2 conclusions {c1, c2} = C drawn from these facts,
x1 ∧ y2 → c1 and x3 ∧ y1 → c2. Therefore there are only 2 desired
conclusions instead of |X | · |Y| = 6. We assume that persons are not
allowed to share the conclusions directly, but they share the facts that
lead to the desired conclusions. We assume both parties have a shared
knowledge of the mapping between the facts and conclusions before
communication takes place. The idea is that communicating any
combination of facts is not always useful. Specifically, a person may
choose to ignore a message if it is not relevant, or when the fact does
not help infer any necessary conclusion in the current situation. We
refer to this network problem as a semantic communication problem,
as the logical relations define the semantic aspects of the messages
and the communicating parties are concerned in obtaining the facts
that lead to meaningful conclusions, instead of encoding and decoding
any fact as in conventional communication systems. We show that
this modeling can greatly reduce the number of bits to be transmitted
from both parties to learn each other’s message.

II. SYSTEM MODEL

We consider a network model in which two persons are commu-
nicating using a two-way channel. The first person knows the facts
xi ∈ X where X = {x1, . . . , x|X|} and the second person knows the
facts yj ∈ Y with Y = {y1, . . . , y|Y|}. These facts refer to the logical
symbols generated by each source. The first person wants to learn the
second person’s fact whereas the second person wants to learn the
fact of the first person as long as these facts lead to a conclusion. We
assume the relations between the facts and conclusions are restricted
to conjunctive expressions in propositional logic [4]. We define a
subset S of X ×Y to refer to the set of tuples of facts from the two
users that result in a desired conclusion:

S = {(xi, yj) : xi ∧ yj → ck, ck ∈ C, xi ∈ X , yj ∈ Y} (1)

where C denotes the set of all desired conclusions. In case the
facts of two parties do not belong to S, i.e., they do not result
in a desired conclusion, users are not interested in learning each
other’s fact. We assume a noiseless channel exists between the
persons and focus on the source coding problem. We consider a zero-
error, two-way transmission scheme with a deterministic encoding-
decoding protocol with multiple rounds. The mapping φ is used to
encode the facts from S to codewords represented by bit streams.
Let φ(xi, yj) = [φk(xi, yj)]

r
k=1 be the sequence of codewords

exchanged during an r-round communication. φk(xi, yj) represents
the codewords transmitted from both parties at round k:

φk(xi, yj) = [φXk (xi, yj), φ
Y
k (xi, yj)] (2)

where φXk (xi, yj) is the codeword transmitted from the first person
and φYk (xi, yj) is the codeword from the second person at round k.
We also define φX(xi, yj) = [φXk (xi, yj)]

r
k=1 and φY (xi, yj) =

[φYk (xi, yj)]
r
k=1 as the sequences of codewords transmitted from

the first and second users in r rounds. Since we assume a two-
way transmission scheme, both persons can transmit arbitrary length
codewords simultaneously. We allow null transmissions. The maximal
length codeword for the mapping φ is defined as:

l(φ) = max
S

|φ(xi, yj)|, (xi, yj) ∈ S (3)

Our aim is to find the best encoding scheme in terms of the maximal
codeword length, which is given as follows:

l̄ = min
φ

l(φ) (4)

Since useful fact pairs are only a subset of the fact space, each fact
from one person is partially connected to the facts from the other
person. We define the ambiguity set AXi as the set of all possible
facts from the second person that lead to a conclusion with xi:

AXi = {yj : xi ∧ yj → ck, yj ∈ Y, ck ∈ C} (5)

Similarly, define the ambiguity set AYj for every fact yj as:

AYj = {xi : xi ∧ yj → ck, xi ∈ X , ck ∈ C} (6)
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Fig. 1. Network model with 2 users and 10 facts for each user.

where i = 1, . . . , |X |, j = 1, . . . , |Y|. The number of elements
in each set is given by |AXi | = di and |AYj | = mj , respectively,
bounded by a maximum di ≤ d and mj ≤ m for some d,m ∈ N
for every i, j. We note that these relations are purely semantical and
that any pair of facts can appear with nonzero probability whether
they are meaningful together or not. However, persons are interested
in recovering messages only if they lead to a conclusion, irrespective
of their statistical frequencies.

Lemma 1. [6] Let (xi, yj), (xî, yj), (xî, yĵ) ∈ S be fact pairs such
that i, î ∈ X , i 6= î and j, ĵ ∈ Y, j 6= ĵ. If φ(xi, yj) or φ(xî, yĵ) is
a prefix of the other, then the following holds:

φ(xi, yj) = φ(xî, yj) = φ(xî, yĵ) (7)

Proposition 1. The set of codewords for the facts in the ambiguity
set AXi for each xi ∈ X is prefix-free. Similarly, the set of codewords
in AYj for each yj ∈ Y is prefix-free.

This proposition follows from Lemma 1 and the property that the
codewords corresponding to the facts in the ambiguity set have to
be prefix-free for the receiver to interpret the codeword correctly for
error-free decoding.

III. LOWER BOUND ON SEMANTIC CODEWORD LENGTH

In this section, a lower bound is derived for maximal code length
of the two-way semantic network.

Theorem 1. Let io be the index of the first fact xio such that |Aio | =
d. Similarly, define jo as the index of the fact yjo such that |Ajo | =
m. A lower bound on the maximal codeword length of the two-way
semantic network is given as:

l̄≥ max
(xio ,yj)∈S
(xi,yjo )∈S

{dlog(d)e+ dlog(mj)e, dlog(di)e+ dlog(m)e} (8)

Proof: The following result follows from Proposition 1:

φX(xi, yj) ≥ dlog(|AXi |)e = dlog(di)e (9)

φY (xi, yj) ≥ dlog(|AYj |)e = dlog(mj)e (10)

for all xi ∈ X and yj ∈ Y . Then the worst-case codeword length
for the mapping φ satisfies:

l̄ = min
φ

max
(xi,yj)∈S

|φ(xi, yj)| (11)

= min
φ

max
(xi,yj)∈S

(|φX(xi, yj)|+ |φY (xi, yj)|) (12)

≥ max
(xi,yj)∈S

(dlog(|AXi |)e+ dlog(|AYj |)e) (13)

= max
(xi,yj)∈S

(dlog(di)e+ dlog(mj)e) (14)

≥ max
(xio ,yj)∈S
(xi,yjo )∈S

{dlog(d)e+ dlog(mj)e, dlog(di)e+ dlog(m)e} (15)

IV. SEMANTIC RELATIONS BETWEEN FACTS AND THE UPPER

BOUND

In this section we consider the upper bound on the encoding
schemes for sharing the facts between the two parties. We start with
the following naive upper bound.

Theorem 2. The maximum code length for the two-way semantic
network with one round of interaction is:

l̄ ≤ dlog(χ(GX))e+ dlog(χ(GY ))e (16)

where χ(GX) and χ(GY ) are the chromatic numbers of the charac-
teristic graphs GX and GY , respectively.

Proof: Let

RX = {xi : (xi, yj) ∈ S, xi ∈ X , yj ∈ Y} (17)

RY = {yj : (xi, yj) ∈ S, xi ∈ X , yj ∈ Y} (18)

Define a characteristic graph GX = (VX , EX) for the first person
with the vertex set VX = RX and an edge (xi, xî) if there exists
yj such that xi ∧ yj → ck, xî ∧ yj → ck̂ and ck 6= ck̂. Denote the
chromatic number of this graph by χ(GX). The first person sends
the index of the color of her fact, which requires no more than
dlog(χ(GX))e bits. A similar graph GY = (VY , EY ) is defined for
the second user, who sends the index of the color of his fact by
using at most dlog(χ(GY ))e bits. Now, both parties can use their
own facts to determine the conclusion. This communication takes
only one round and requires dlog(χ(GX))e + dlog(χ(GY ))e bits in
the worst-case.

Observe that the above approach may become inefficient when
the number of facts in the support set increases. We want to know
if semantics can help to reduce the transmitted number of bits and
whether source coding can benefit from logical relations. We first
utilize a coding scheme from interactive communication to show that
allowing another round of interaction between the two parties can
greatly reduce the semantic compression rate. Later, we propose a
scheme to improve the upper bound by allowing users to take turns in
multiple rounds, even when the number of non-empty transmissions
from each user stays the same. In order to show this, we utilize the
following hypergraph partitioning results:

Lemma 2. [7] If for all xi ∈ X , |AXi | ≤ d and for all yj ∈ Y ,
|AYj | ≤ m, then the worst-case codeword length is bounded by:

l̄ ≤ dlog(dm)e+ dlog(min(d,m))e (19)

Lemma 3. [8] Let H = (V,E) be a hypergraph with a vertex set V
of size |V |. Hyperedges are given as Ei ⊆ V for i = 1, . . . , |E| and
each hyperedge consists of at most d elements, i.e., |Ei| ≤ d. Given
ε > 0, there exists a constant c(ε) such that ∀p ≥ (ln

√
|V ||E|)1+ε

and p > 1, a partition V1, V2, . . . Vd d
p
c(ε)e of V can be found with the

property |Vk ∩Ei| < p, for i = 1, . . . , |E| and k = 1, . . . , d d
p
c(ε)e.

We introduce the following definitions to be used in the remaining
part of the paper. Define the set of colors used for the characteristic
graphs GX and GY in Theorem 2 as QX = {qX1 , . . . , qX|QX |}
and QY = {qY1 , . . . , qY|QY |}, respectively, with chromatic numbers
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|QX | = χ(GX) and |QY | = χ(GY ). Let q(xi) and q(yj) be the
colors assigned to the facts xi and yj . Then, we define the ambiguity
set T Xn of color qXn as follows:

T Xn = {qYz : xi ∧ yj → ck, xi ∈ X , q(xi) = qXn , yj ∈ Y,
q(yj) = qYz , q

Y
z ∈ QY , ck ∈ C}, n = 1, . . . , |QX | (20)

Similarly, define the ambiguity set T Yj for each qYj as:

T Yz = {qXn : xi ∧ yj → ck, xi ∈ X , q(xi) = qXn , q
X
n ∈ QX ,

yj ∈ Y, q(yj) = qYz , ck ∈ C}, z = 1, . . . , |QY | (21)

The following result for the semantic two-way source coding problem
shows that logical relations can improve the semantic source coding
performance:

Theorem 3. Given |T Xn | ≤ d for n = 1, . . . , |QX | and |T Yz | ≤ m
for z = 1, . . . , |QY |. Then

l̄ ≤ dlog(d)e+ dlog(m)e
+ (1 + ε) log log(

√
χ(GX)χ(GY )) + 2 log c(ε) + 5 (22)

Proof: The proof follows from Lemma 3 and Theorem 4 in [8].
The idea is to use hypergraph partitioning to obtain a partition of
QX and QY such that in each partition, the set of colors that lead a
conclusion when combined with the color of the fact from the other
user has a number of elements no greater than p.

Specifically, there exists a partition of QX as
QX1,QX2, . . .QXdm

p
c(ε)e, such that for any qYz :

|QXu ∩ qXn : xi ∧ yj → ck| ≤ p, (23)

for xi ∈ X , q(xi) = qXn , q
X
n ∈ QX , yj ∈ Y, q(yj) = qYz , ck ∈

C, u = 1, . . . , dm
p
c(ε)e. Similarly, a partition exists for the second

user on QY as QY 1,QY 2, . . . , QY d d
p
c(ε)e, such that for any qxn:

|QY u ∩ qYz : xi ∧ yj → ck| ≤ p, (24)

with xi ∈ X , q(xi) = qXn , yj ∈ Y, q(yj) = qYz , q
Y
z ∈ QY , ck ∈

C, u = 1, . . . , d d
p
c(ε)e. Then the two-way communication takes

place as follows. Let p = (ln
√
|QX ||QY |)1+ε. The first person

sends the index of the partition of QX that the color of her fact is
in. Note that this requires no more than dlog(m

p
c(ε))e bits. On the

other side, the second person sends the index of the partition of QY
that the color of his fact lies in by using at most dlog( d

p
c(ε))e bits.

The first person can use her color and the received partition index to
restrict the possible second user colors in a p-dimensional subspace.
The second person can use a similar elimination method, leaving at
most p possible colors from the first user. Thus, communication is
now limited to an at most p × p subset of QX × QY . The number
of bits required for both parties to learn both facts is no more than
3dlog(p)e, which is obtained by using m = d = p in Lemma 2.

Thus the total number of bits is given as:

l̄ ≤ dlog (
m

p
c(ε))e+ dlog (

d

p
c(ε))e+ 3dlog(p)e (25)

≤ (log (
m

p
c(ε)) + 1) + (log (

d

p
c(ε)) + 1) + 3(log(p) + 1) (26)

≤ log(m) + log(d) + (1 + ε) log ln (
√
|QX ||QY |)

+ 2 log c(ε) + 5 (27)

≤ dlog(d)e+ dlog(m)e+ (1 + ε) log log (
√
|QX ||QY |)

+ 2 log c(ε) + 5 (28)
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Fig. 2. Various set sizes for X and Y vs. fraction α/β.
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Fig. 3. Various d and m values vs. fraction α/β.

This upper bound is achieved by three rounds of communication
when each person makes two non-empty transmissions. We assume
the partitioning protocol is agreed upon by the two parties before
communication takes place. If d and m are such that d ' m, then
we observe that dlog(d)e + dlog(m)e � log log (

√
|QX ||QY |) for

almost all values of d and m.
Next we show that the upper and lower bounds are tight for some

graphs. Let us consider the following example. Define a network
as in Fig. 1 with the following condition. Let n′ be an index of a
color such that T Xn′ = d and z′ be the color such that T Yz′ = m.
Assume that qXn′ ∈ T Yz′ or qYz′ ∈ T Xn′ . Then the lower bound becomes
l̄ ≥ dlog(d)e+dlog(m)e. Thus, for the case when d ' m, the upper
bound is tight. However, if this condition is not satisfied, the upper
bound can grow significantly when the fact spaces become larger.

We present the relation between the worst case upper and lower
bounds for various d, m values and set sizes in Fig. 2 and Fig.3.
For the sake of this example, we assume every fact pair leads to a
different conclusion, and thus the characteristic graphs for both users
are complete graphs where χ(GX) = X and χ(GY ) = Y . We define
α = log log (

√
|X ||Y|) and β = dlog(d)e+dlog(m)e. Fig. 2 shows

various set sizes for X and Y vs. the fraction α/β for fixed d = 2
and m = 5. We present in Fig. 3 the relation between various d and
m values and the fraction α/β for |X | = 1000 and |Y| = 1000. The
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figures suggest that, when d and m values are small with respect to
the set sizes, there is a significant gap between the upper and lower
bounds, which reduces only when d and m start approaching the set
sizes.

Next, we investigate whether we can improve this upper bound
and reduce the gap by allowing multiple rounds of communication.
This allows the proposed scheme to work in low-rate communication
environments when sources have limited bandwidth but do not mind
having extra rounds of interaction. The following scheme shows that
the upper bound can be improved by increasing the total number of
rounds, even in the case when the number of non-empty transmissions
from each user stays the same.

Consider the characteristic graph used in Theorems 2 and 3. Denote
the set of colors in the first round by Q1

X = QX and Q1
Y = QY

for the first and the second user, respectively. We assume d > m
without loss of generality. Let p1 = (ln

√
|Q1

X ||Q1
Y |)

1+ε. From
Lemma 3, Q1

X can be partitioned into dm
p1
c(ε)e groups such that

for each partition u:

|Q1
Xu ∩ qXn : xi ∧ yj → ck| ≤ p1, (29)

where xi ∈ X , yj ∈ Y, q(xi) = qXn , q
X
n ∈ Q1

X , ck ∈ C and u =
1, . . . , dm

p1
c(ε)e. In this round, the first person sends the index of the

partition that her fact resides in by using no more than dlog (m
p1
c(ε))e

bits, and the second person makes an empty transmission. Let û be
the index of the partition sent by the first person in the first round.
In the second round, after receiving the index from the first user, the
second person considers the following set:

Q2
Y = {qYz : xi ∧ yj → ck, xi ∈ X , q(xi) ∈ Q1

Xû

yj ∈ Y, q(yj) = qYz , q
Y
z ∈ Q1

Y } (30)

Note that |Q2
Y | ≤ min{d|Q1

Xû|, |Q1
Y |}. Next, consider a hyper-

graph H = (V,E) with the vertex set V = Q2
Y and edges

E = {E1, . . . , E|E|} where

En = {qYz : xi ∧ yj → ck, xi ∈ X , q(xi) = qXn

yj ∈ Y, q(yj) = qYz , q
Y
z ∈ Q2

Y }. (31)

for each n = 1, . . . , |Q1
Xû|. Thus the total number of edges is |E| =

|Q1
Xû|, and the number of elements in each hyperedge satisfies:

|En| ≤ m, n = 1, . . . , |Q1
Xû| (32)

We note that the first person can also determine this set by using the
partition index for her color and the logical relations between the two
facts of both parties. We then define the following variable:

p2 = (ln
√
|V ||E|)1+ε = (ln

√
|Q2

Y ||Q1
Xû|)

1+ε < p1 (33)

Then the second user can partition Q2
Y into d d

p2
c(ε)e groups and

sends the index of his fact’s color, which requires no more than
dlog (m

p2
c(ε))e bits. After receiving the partition index, the first user

can use her color to reduce the number of possible colors from the
second user to p2.

In the third round, colors are now restricted to a p1 × p2 dimen-
sional subspace of QX ×QY . Worst-case codeword length can then
be bounded using Lemma 2 by substituting d = p1 and m = p2.
Thus the number of bits required to recover the colors is no more than
dlog(p1)e+2dlog(p2)e. We also note that the same constant c(ε) can
be used for both partitions. This follows from the construction of the
constant c(ε) in [8], from which it follows that a constant that holds
for p1 also holds for p2 < p1. The following theorem provides the
new upper bound.

Theorem 4. The new upper bound for the worst-case code length

for the two-way interactive semantic network is given by:

l̄new ≤ log(m) + log(d) + (1 + ε) log log (
√
|Q1

Xû||Q2
Y |)

+ 2 log c(ε) + 5 (34)

Proof: The total number of bits required satisfies:

l̄new ≤ dlog (
m

p1
c(ε))e+ dlog (

d

p2
c(ε))e+ dlog(p1)e

+ 2dlog(p2)e (35)

≤ log(m) + log(d) + log(p2) + 2 log c(ε) + 5 (36)

≤ dlog(d)e+ dlog(m)e+ (1 + ε) log log (
√
|Q1

Xû||Q2
Y |)

+ 2 log c(ε) + 5 (37)

This scheme requires four rounds of interaction in total. However,
each person again makes two non-empty transmissions as in Theorem
3. The new upper bound satisfies the following:

l̄new < l̄ (38)

The number of rounds can be further increased to reduce the effect of
set sizes of the facts on the upper bound. Due to space concerns, we
only present that this follows from applying hypergraph partitioning
within a partition described by our method sequentially. As the set
sizes decrease in each round, the third term in (34) contributed by
p also decreases, whereas the first two terms stay the same, with a
different constant term. Thus the term that depends on the set sizes
decreases, which is a desirable property for large networks.

V. CONCLUSION

In this paper, we have considered a semantic network with two
sources interacting to share their facts. Depending on the network
structure, some desired conclusions may be drawn from these facts.
The two parties are interested in sharing only the facts that lead to
desired conclusions. We have investigated lower and upper bounds for
worst-case performance. We have proposed a method for utilizing the
logical relationships between these facts, and show that performance
can be improved by increasing the number of rounds of interaction.
Future work includes semantic source coding with multiple sources
and different world interpretations among the network entities.
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