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Abstract: We consider a two party network where each party wishes to compute a function of
two correlated sources. Each source is observed by one of the parties. The true joint distribution
of the sources is known to one party. The other party, on the other hand, assumes a distribution
for which the set of source pairs that have a positive probability is only a subset of those that may
appear in the true distribution. In that sense, this party has only partial information about the true
distribution from which the sources are generated. We study the impact of this asymmetry on the
worst-case message length for zero-error function computation, by identifying the conditions under
which reconciling the missing information prior to communication is better than not reconciling it but
instead using an interactive protocol that ensures zero-error communication without reconciliation.
Accordingly, we provide upper and lower bounds on the minimum worst-case message length for the
communication strategies with and without reconciliation. Through specializing the proposed model
to certain distribution classes, we show that partially reconciling the true distribution by allowing a
certain degree of ambiguity can perform better than the strategies with perfect reconciliation as well
as strategies that do not start with an explicit reconciliation step. As such, our results demonstrate a
tradeoff between the reconciliation and communication rates, and that the worst-case message length
is a result of the interplay between the two factors.

Keywords: data compression; function computation; partial information; characteristic graphs

1. Introduction

Consider a scenario in which two parties make a query over distributed correlated databases.
Each party observes data from one database, whereas the query has to be evaluated over the data
observed by both users separately. Suppose that one party knows all data combinations that may
lead to an answer to some query, whereas the other party is missing some of these combinations.
The parties are allowed to communicate with each other. The goal is to find the minimum amount of
communication required so that both parties can retrieve the correct answer for any query. We model
this scenario as interactive communication in which two parties interact to compute a function of two
correlated discrete memoryless sources. Each source is observed by one party. One party knows the
true joint distribution of the sources, whereas the other party is missing some source pairs that may
occur with positive probability and assumes another distribution in which these missing pairs have
zero probability. Communication takes place in multiple interactive rounds, at the end of which a
function of the two correlated sources has to be computed at both parties with zero-error. We study
the impact of this partial knowledge about the true distribution on the worst-case message length.
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In a function computation scenario, one party observes a random variable X, whereas the other
party observes a random variable Y, where each realization of (X, Y) is generated from some probability
distribution pXY. The two parties wish to compute a function f (X, Y) by exchanging a number of
messages in multiple rounds. Conventionally, the true distribution from which the sources are
generated is available as common knowledge to both parties. This work extends this framework to
the scenario in which the true distribution of the sources is available at one of the communicating
parties only, while the distribution assumed at the other party has missing information compared to
the true distribution. That is, the second party has only partial knowledge about the source pairs that
are realized with positive probability according to the true distribution.

In order to identify the impact of partial information on the worst-case message length, we consider
three interactive communication protocols. The first interactive protocol we consider is to reconcile
the partial information between the two parties in a way to allow the second party to learn the true
joint distribution, and then utilize the true distribution for function computation. The reconciliation
stage transforms the problem into the conventional zero-error function computation problem with
zero-error. Although this is a natural approach in that it ensures that both sides are in agreement about
the true distribution, this protocol requires additional bits to be transmitted between the two parties
for reconciling the distribution information, which, in turn may increase the overall message length.
The second protocol we consider provides an alternative interaction strategy in which the two parties do
not reconcile the true distribution, but instead use a function computation strategy that allows error-free
computation under the distribution uncertainty. In doing so, this protocol alleviates the costs that may
have incurred for reconciling the distributions. The message length for the function computation part,
however, may be larger compared to that of the previous scheme. The last interaction protocol quantifies
a trade-off between the two interaction protocols, by allowing the two parties to partially reconcile
the distributions. In this protocol, each party learns the true distribution up to a class of distributions.
The function computation step then ensures error-free computation under any distribution within the
reconciled class of distributions. By doing so, we create different levels of common knowledge about
the distribution to investigate the relation between the cost of various degrees of partial reconciliation
and the resulting compression performance.

By leveraging the proposed interaction protocols, we identify the conditions under which it is
better or worse to reconcile the partial information than to not reconcile the distributions, i.e., using a
zero-error encoding scheme with possibly increased message length. Accordingly, we develop upper
and lower bounds on the worst-case zero-error message length for computing the function at both
parties under different reconciliation and communication strategies. Our results demonstrate that,
reconciling the partial information, although often reducing the communication cost, may or may not
reduce the overall worst-case message length. In effect, the worst-case message length results from an
interplay between reconciliation and communication costs. As such, partial reconciliation of the true
distribution is sometimes strictly better than the remaining two interaction strategies.

Related Work

For the setting when both parties know the true joint distribution of the sources, interactive
communication strategies have been studied in [1] to enable both sides to learn the source observed by
the other party with zero-error. Reference [2] has considered the impact of the number of interaction
rounds on the worst-case message length, as well as upper and lower bounds on the worst-case message
length. The optimal zero-error communication strategy for minimizing the worst-case message length,
even for the setting in which the communicating parties know the exact true distribution of the sources,
has since been an open problem. The zero-error communication problem has also been considered for
communicating semantic information [3,4]. Our work is also related to the field of communication
complexity, which studies the minimum amount of communication required to compute a function
of two sources [5]. Known as the direct-sum theorem, it was shown in [6] that computing multiple
instances of a function can reduce the minimum amount of communication required per instance.
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The main distinction between the communication-complexity approaches and the setups from [1,2] is
that the models from [1,2] emphasize utilizing the source distribution and in particular its support
set to reduce the amount of communication, which is also referred to as the computation of a partial
function ([7], Section 4.7).

In addition to the zero-error setup, interactive communication has also been considered for
computing a function at one of the communicating parties with vanishing error probability [8].
Subsequently, interactive communication has been considered for computing a function of two sources
simultaneously at both parties with vanishing error probability [9]. The two-party scenario has been
extended to a multi-terminal function computation setup in [10], in which each party observes an
independent source and broadcasts its message to all the nodes in the network. A related study in [11]
investigates the role of side information when communicating interactively a source known by one
party to another with vanishing error. Interactive communication has also been leveraged in [11] for
one-way recovery of a source known by one party at the other side with vanishing error in the presence
of side information.

This work is also related to zero-error communication strategies in non-interactive data
compression scenarios. In particular, we leverage graphical representations of the confusable source
and distribution terms, which are reminiscent of characteristic graphs introduced in [12] to study the
zero-error capacity of a channel. Subsequently, characteristic graphs have been utilized for zero-error
compression of a source in the presence of decoder side information [13,14]. They have been utilized
to characterize graph entropy and chromatic entropy in [15,16], respectively, in [8] to characterize the
rate region for the lossless computation of a function, and in [17] to obtain achievable rates for lossy
function computation. Such graphical representations have also been leveraged for non-interactive set
reconciliation [18]. Another relevant application is zero-error source coding with compound decoder
side information considered in [19].

Many existing and emerging network applications, e.g., sensor networks, cyber-physical systems,
social media, and semantic networks, facilitate interaction between multiple terminals to share
information towards achieving a common objective [20–23]. As such, it is essential for such systems to
mitigate the ambiguities that may result from the imperfect knowledge available at the communicating
parties. The case when the communicating parties assume different prior distributions while
communicating a source from one party to another has recently been considered for the non-interactive
setting. In [24], communicating a source with vanishing error is considered in the presence of side
information when the joint probability distributions assumed at the encoder and the decoder are
different. Reference [25] has incorporated shared randomness to facilitate compression when the source
distribution assumed by the two parties are different from each other. Deterministic compression
strategies are investigated in [26] for the case when no shared randomness is present. In this work,
we study interactive function computation with partial priors for the asymmetric scenario when the true
joint distribution of the sources is available at one party only [27].

2. Problem Setup

This section introduces our two-party communication setup with asymmetric priors. The following
notation is adopted in the sequel. We use X for a set with cardinality |X |, and define xn = (x1, . . . , xn)

where x1 = x [28]. The difference between defining a sequence xn = (x1, . . . , xn) vs. taking the nth

power of a given number will be clear from context. We denote {0, 1}∗ = ∪∞
n=1{0, 1}n. The support set

of a distribution p(x, y) over a set X ×Y is represented as,

supp(p) , {(x, y) ∈ X ×Y : p(x, y) > 0}, (1)

where
supp(pn) = {(xn, yn) ∈ X n ×Yn : p(xi, yi) > 0 for i = 1, . . . , n}. (2)
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The chromatic number of a graph G is given by χ(G). `(·) represents the length (number of bits)
of a bit stream. Finally, for a bipartite graph G = (V, U, E) with vertex sets V, U and an edge set E,
we let ∆X and ∆Y denote the maximum degree of any node v ∈ V and u ∈ U, respectively.

2.1. System Model

Consider discrete memoryless correlated sources (X, Y) defined over a finite set X × Y .
The sources are generated from a distribution p(x, y) ∈ P where P is a finite set of probability
distributions. Nodes 1 and 2 observe xn ∈ X n and yn ∈ Yn, respectively, with probability
pn(xn, yn) = ∏n

i=1 p(xi, yi). The distribution p(x, y) is fixed over the course of n time instants. We refer
to p(x, y) as the true distribution of sources (X, Y) as it represents nature’s selection for the distribution
of sources (X, Y). User 1 knows the true distribution p(x, y). The source distribution known to user
2, however, may be different from the true distribution. In particular, user 2 assumes a distribution
q(x, y) ∈ Q such that supp(q) ⊆ supp(p) where Q is a finite set. The set of distributions P is known
by both users, but the actual selections for p(x, y) and q(x, y) are only known at the corresponding
user. In that sense, q(x, y) provides some, although incomplete, information to user 2 about p(x, y).

Each of the two parties is requested to compute a function f : X ×Y → F for each term of the
source sequence (Xn, Yn), which we represent as

f n(xn, yn) , ( f (x1, y1), . . . , f (xn, yn)), (3)

where F is a finite set. In particular, user 1 recovers some Zn
1 ∈ Fn whereas user 2 recovers some

Zn
2 ∈ Fn such that zero-error probability condition

Pr[ f n(Xn, Yn) 6= Zn
1 ] = Pr[ f n(Xn, Yn) 6= Zn

2 ] = 0, (4)

is satisfied, which is evaluated over the true distribution p(x, y). Note that, whenever f (x, y) is a
bijective function, Equation (4) reduces to the conventional zero-error interactive data compression
where each source symbol is perfectly recovered at the other party [1].

The two users employ an interactive communication protocol, in which they send binary
strings called messages at each round. A codeword represents a sequence of messages exchanged
by the two users in multiple rounds. In particular, for an r round communication, the encoding
function is given by some variable-length scheme φ : X n × Yn → {0, 1}∗ for which the
codeword φ(xn, yn) = (φ1(xn, yn), . . . , φr(xn, yn)) is the sequence of messages exchanged for the
pair (xn, yn) ∈ Sn, where φi(xn, yn) represents the message transmitted by both parties at round i and
φi(xn, yn) = (φ1(xn, yn), . . . , φi(xn, yn)) denotes the sequence of messages exchanged through the first
i rounds for i ∈ {1, . . . , r}. The encoding at each round is based only on the symbols known to the user
and on the messages exchanged between the two users in the previous rounds, so that

φi(xn, yn) = (φX
i (x

n, φi−1(xn, yn)), φY
i (y

n, φi−1(xn, yn))), (5)

where φX
i (x

n, φi−1(xn, yn)) ∈ {0, 1}∗ and φY
i (y

n, φi−1(xn, yn)) ∈ {0, 1}∗ are the messages transmitted
from users 1 and 2 at round i, respectively. The encoding protocol is deterministic and agreed upon by
both parties in advance. Accordingly, we define

φX(xn, yn) = (φX
1 (x

n), . . . , φX
r (x

n, φr−1(xn, yn))), (6)

and

φY(xn, yn) = (φY
1 (y

n), . . . , φY
r (y

n, φr−1(xn, yn))), (7)

as the sequences of messages transmitted from users 1 and 2, respectively, in r rounds. Another condition
is the prefix-free message property to ensure that whenever one user sends a message, the other
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user knows when the message ends. This necessitates that for all (xn, yn), (xn, ŷn) ∈ supp(pn),
then φi−1(xn, yn) = φi−1(xn, ŷn) for some i ∈ {2, · · · , r} requires that φY

i (y
n, φi−1(xn, yn)) is not a

proper prefix of φY
i (ŷ

n, φi−1(xn, ŷn)). Same applies for user 1 when we interchange the roles of X and
Y. In addition, we require the coordinated termination criterion to ensure both parties know when
communication ends. In particular, given some (xn, yn), (xn, ŷn) ∈ supp(pn), we require that φ(xn, yn) is
not a proper prefix of φ(xn, ŷn). Same condition applies when the roles of X and Y are interchanged. The
last condition we require is the unique message property. In particular, if (xn, yn), (xn, ŷn) ∈ supp(pn),
then φi−1(xn, yn) = φi−1(xn, ŷn) implies that φX

i (x
n, φi−1(xn, yn)) = φX

i (x
n, φi−1(xn, ŷn)). The same

applies when the roles of X and Y are changed. Null transmissions are allowed at any round.
The worst-case codeword length for mapping φ is given by

l(n)φ = max
(xn,yn)∈supp(pn)

1
n
`(φ(xn, yn)) bits/symbol. (8)

where `(·) is the number of bits in a bit stream. The optimal worst-case codeword length is given by

l(n) = min
φ

l(n)φ . (9)

The zero-error condition in Equation (4) ensures that, for any given function, the worst-case
codeword length of the optimal communication protocol is the same for all distributions in P , i.e., for
any p, p′ ∈ P , as long as supp(p) = supp(p′). We utilize this property for designing interactive
protocols by constructing graphical structures as described next. It is useful to note that the results
throughout the paper hold when the parties only know the support of the distributions p(x, y) and
q(x, y) in the problem set up considered in this paper as described next. For each p(x, y) ∈ P , we
define a bipartite graph Gp = (X ,Y , Ep) with vertex sets X , Y , and an edge set Ep. An edge (x, y) ∈ Ep

exists if and only if p(x, y) > 0.
Observe that we have Gp = Gp′ for any p(x, y), p′(x, y) ∈ P with supp(p) = supp(p′). One can

therefore partition P into groups of distributions that have the same support set, such that the set of
distributions in each partition maps to a unique bipartite graph. We represent this set of resulting
bipartite graphs by G, and denote each element G ∈ G by G = (X ,Y , EG). The bipartite graph structure
used for partitioning the distributions in P is related to the notion of ergodic decomposition from [29],
in that each bipartite graph represents a class of distributions with the same ergodic decomposition.
For each G ∈ G, we denote

Sn
G = {(xn, yn) ∈ X n ×Yn : (xi, yi) ∈ EG, i = 1, . . . , n}, (10)

and note that for any distribution p(x, y) ∈ P whose support set can be represented by the bipartite
graph G, one has Sn

G = supp(pn).
Given G ∈ G, we define the following sets. For each xn ∈ X n, we define an ambiguity set

IX,G(xn) = { f n(xn, yn) ∈ Fn : (xi, yi) ∈ EG, yi ∈ Y , i = 1, . . . , n}, (11)

where each element is a sequence of function values, and λG(xn) , |IX,G(xn)| denotes the number of
distinct sequences of function values. Similarly, for each yn ∈ Yn, we define an ambiguity set

IY,G(yn) = { f n(xn, yn) ∈ Fn : (xi, yi) ∈ EG, xi ∈ X , i = 1, . . . , n}, (12)

with µG(yn) , |IY,G(yn)|. Next, we let

λG , max
x∈X

λG(x), (13)
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and note that max
xn∈X n

λG(xn) = (λG)
n. Similarly, we define

µG , max
y∈Y

µG(y), (14)

and note that max
yn∈Yn

µG(yn) = (µG)
n. We denote the maximum vertex degrees for graph G by

∆X , max
x∈X
|{y ∈ Y : (x, y) ∈ EG}|, ∆Y , max

y∈Y
|{x ∈ X : (x, y) ∈ EG}|. (15)

Lastly, using Equations (11) and (12), for each (xn, yn) ∈ Sn
G we define

IG(xn, yn) = IX,G(xn)∪ IY,G(yn), (16)

An illustrative example of the bipartite graph is given in Figure 1 for the function f (x, y)=(x + y)
mod 4 and the probability distribution

p(x, y) =

{
1

|X |+2 if x = 1 or y = 3

0 otherwise
(17)

over the finite set X = {1, . . . , 5} and Y = {1, . . . , 3}.

λG = 3

X Y

User 1 User 2

1

1

2

23

3

4

5

0

1

2

µG = 4

3

3 2

3

0

Figure 1. Bipartite graph representation of the probability distribution from Equation (17). Edge labels
represent the function values f (x, y) = (x + y) mod 4. Note that the maximum vertex degree is
∆X = 3 for x ∈ X and ∆Y = 5 for y ∈ Y whereas λG = 3 and µG = 4.

Finally, we review a basic property of zero-error interactive protocols, which is key to our analysis
in the sequel. The straightforward proof immediately follows, e.g., from ([1], Lemma 1, Corollary 2).

Proposition 1. Let [φk(xn, yn)]rk=1 be the concatenation of all φk(xn, yn) for k = 1, . . . , r. Then, for each
(xn, yn) ∈ Sn

G, the set of sequences corresponding to the symbols in IG(xn, yn) should be prefix-free.

Proof. The proof follows from the following observation. Suppose for some (xn, yn) ∈ Sn
G, we have

(x̂n, yn), (xn, ŷn) ∈ Sn
G where [φk(x̂n, yn)]rk=1 is a prefix of [φk(xn, ŷn)]rk=1. Then, from ([1], Lemma 1),

we have φ(x̂n, yn) = φ(xn, yn) = φ(xn, ŷn). Now, if f n(xn, yn) 6= f n(xn, ŷn), then user 1 will not
be able to distinguish between the two function values as the message sequences are the same for
both. Similarly, if f n(xn, yn) 6= f n(x̂n, yn), then user 2 will not be able to distinguish between the two
function values. Hence, [φk(x̂n, yn)]rk=1 cannot be a prefix of [φk(xn, ŷn)]rk=1 whenever f n(x̂n, yn) 6=
f n(xn, ŷn). From the same argument, [φk(xn, yn)]rk=1 cannot be a prefix of [φk(xn, ŷn)]rk=1 whenever
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f (xn, yn) 6= f (xn, ŷn) otherwise user 1 will not be able to recover the correct function value. The same
applies to user 2 when the roles of X and Y are changed. Therefore, for any given (xn, yn) ∈ Sn

G, we
need at least |IG(xn, yn)| prefix-free sequences, one for each element of IG(xn, yn). Otherwise, one
of the above three cases will occur and at least one user will not be able to distinguish the correct
function value.

2.2. Motivating Example

Consider two interacting users, user 1 observing x ∈ X = {1, . . . , 7} and user 2 observing
y ∈ Y = {1, . . . , 7} according to the distribution

p(x, y) =

{
1/5 if(x, y) ∈ {(3, 1), (3, 2), (3, 5), (6, 5), (7, 5)}

0 otherwise
(18)

where both users want to compute a function of (x, y) ∈ X ×Y

f (x, y) =


0 if x− y > 0

1 if − 1 ≤ x− y ≤ 0

2 otherwise .

(19)

First, assume that users 1 and 2 both know the distribution p(x, y); we will call this the symmetric
priors case. In this case, one can readily observe from Equations (18) and (19) that the function value
f (x, y) = 1 will never occur, hence the two parties can discard that value beforehand. That is, in this
case users 1 and 2 know beforehand that they only need to distinguish between two function values,
f (x, y) = 0, which occurs when (x, y) ∈ {(3, 1), (3, 2), (6, 5), (7, 5)}, and f (x, y) = 2, which occurs
when (x, y) = (3, 5). We now detail five interaction protocols as follows. The first one is a naïve
protocol where user 1 sends x to user 2, and user 2 sends y to user 1, after which both users can
compute f (x, y). To do so, users 1 and 2 need dlog 7e = 3 bits each, i.e., a total of 6 bits is needed.
Second, consider a protocol in which user 1 sends x to user 2, and user 2 calculates f (x, y) and sends
the result back to user 1. To do so, user 1 needs to use dlog 7e = 3 bits. User 2 on the other hand needs
to send only log 2 = 1 bit, since there are at most 2 possible function values. This protocol uses 4 bits
in total in two rounds. Same applies to the third protocol where we exchange the roles of users 1 and
2. Since users 1 and 2 know the support set of p(x, y), i.e., the pairs of (x, y) for which p(x, y) > 0,
a fourth protocol would involve sending only dlog 3e+ dlog 3e = 4 bits in total, in which user 1 sends
one of x ∈ {3, 6, 7}, whereas user 2 sends one of y ∈ {1, 2, 5}. Lastly, consider a different protocol
where user 1 sends “0” if x ∈ {6, 7}, and a “1” otherwise, which is sufficient for user 2 to infer whether
f (x, y) = 0 or f (x, y) = 2 depending on the y he observes, since f (x, y) = 1 is not possible with these
(x, y) values. Therefore, user 2 computes f (x, y) and sends the result back to user 1 by using log 2 = 1
bit. This protocol requires only log 2 + log 2 = 2 bits in two rounds and at the end both users learn
f (x, y). As is clear from this example, communicating all distinct pairs of symbols is not always the
best strategy, and resources can be saved by using a more efficient strategy.

Next, consider the following variation on the example. Users 1 and 2 again wish to compute
f (x, y) given in Equation (19), but this time the joint distribution of the sources p(x, y) is selected from
a set of distributions P = {p1, p2, p3} where p1(x, y) is defined as in Equation (18), and we have

p2(x, y) =

{
1/7 if (x, y) ∈ {(3, 2), (3, 3), (3, 4), (3, 5), (4, 5), (5, 5), (6, 5)}

0 otherwise
(20)

and

p3(x, y) =

{
1/5 if (x, y) ∈ {(3, 1), (3, 3), (3, 5), (4, 5), (7, 5)}

0 otherwise .
(21)
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As described in the beginning of Section 2.1, one can represent the structure of these distributions
and the corresponding function values via bipartite graphs. Such a bipartite graph for the probability
distribution p2(x, y) in Equation (20) is given in Figure 2.

λG = 3

X Y

User 1 User 2

1 1

2 2

3 3

4 4

5 5

0

1

1

2
1

1

6 6

7 7

0

µG = 3

Figure 2. Shared bipartite graph with n = 1. X = Y = {1, . . . , 7} representing the distribution
p2(x, y) from Equation (20). Edge labels represent the function values f (x, y) defined in Equation (19).
Maximum vertex degrees are ∆X = ∆Y = 4 for x ∈ X and y ∈ Y whereas λG = µG = 3.

User 1 observes p(x, y), i.e., the true distribution. User 2 knows the set P , but not the specific
choice in P . User 2 instead observes a distribution q(x, y) from a set Q = {q1, q2}.

q1(x, y) =

{
1/3 if (x, y) ∈ {(3, 2), (3, 5), (6, 5)}

0 otherwise
(22)

and

q2(x, y) =

{
1/3 if (x, y) ∈ {(3, 1), (3, 5), (7, 5)}

0 otherwise .
(23)

User 1 does not know the distribution q(x, y) observed at user 2. In addition, the setQ is unknown
to both users. The only requirement we have is that this distribution be consistent with p(x, y). That is to
say that the support of q(x, y) is contained in the support of p(x, y), i.e., q(x, y) does not have a positive
probability for a source pair whose probability is zero in p(x, y), i.e., supp(q) ⊆ supp(p). Note that
this is side information in that users 1 and 2 can infer which of the q(x, y) or p(x, y) distributions are
possible at the other party, respectively, given their own distribution.

In order to interact in this setup, users 1 and 2 may initially agree to reconcile the distribution and
then use it as in the previous case. To do so, user 1 informs user 2 of the true distribution. She assigns
an index “0” if p = p1, and a “1” if p ∈ {p2, p3}, and sends it to user 2 by using log 2 = 1 bit. User 2 can
infer the true distribution by using the received index as well as his own distribution q. If the received
index is “0”, then it immediately follows that the true distribution is p1. However, if the received index
is “1”, then user 2 needs to decide between p2 and p3. To do so, he utilizes q: (i) whenever q = q1,
he declares that the true distribution is p2, since supp(q1) * supp(p3), (ii) whenever q = q2, he decides
that the true distribution is p3, since in this case supp(q2) * supp(p2). After this step, both users
know the true distribution, and can compute f (x, y) by exchanging no more than a total number of
dlog 3e+ dlog 3e = 4 bits, as detailed next. The case where p1(x, y) is the true distribution requires 2
bits for interaction as noted earlier. If the true distribution is p2(x, y), user 1 can send user 2 an index
“0” if x ∈ {6}, a “1” if x ∈ {4, 5}, or a “2” otherwise. User 2 can compute f (x, y) and send the result
back to user 1 by using at most dlog 3e = 2 bits, since in the worst-case all three function values may
occur, which happens when x = 3. Therefore, this case requires 4 bits for communication. If instead
the true distribution is p3(x, y), user 1 can send user 2 an index “0” if x ∈ {7}, a “1” if x ∈ {4},
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or a “2” otherwise. User 2 can compute f (x, y) and send it back to user 1 by using dlog 3e = 2 bits,
since all three function values are again possible for x = 3. Hence, this scheme requires 5 bits to be
communicated in total, 1 bit for reconciliation and 4 bits for communication.

An alternative scheme is one in which users 1 and 2 do not reconcile the true distribution,
but instead use an encoding scheme that allows error-free communication under any distribution
uncertainty. To do so, user 1 sends an index “0” if x ∈ {6, 7}, a “1” if x ∈ {4, 5}, and a “2” otherwise.
Describing 3 indices requires user 1 to use dlog 3e = 2 bits. After receiving the index value, user 2 can
recover f (x, y) perfectly, whether the true distribution p is equal to p1, p2, or p3, and then send it to
user 1 by using no more than dlog 3e = 2 bits, since there are at most 3 distinct values of f (x, y) for
each y ∈ Y . Both users can then learn f (x, y). Not reconciling the partial information therefore takes
4 bits, which is less then the previous two stage reconciliation-communication protocol.

3. Communication Strategies with Asymmetric Priors

In this section, we propose three strategies for zero-error communication by mitigating the
ambiguities resulting from the partial information about the true distribution.

3.1. Perfect Reconciliation

For the communication model described in Section 2.1, a natural approach to tackle the partial
information is by first sending the missing information to user 2 so that both sides know the source
pairs that may be realized with positive probability with respect to the true distribution, which can
then be utilized for communication. This setup consists of two stages. In the first stage, user 2 learns
the support set of the true distribution p(x, y), or equally the bipartite graph G corresponding to
p(x, y), from user 1. We call this the reconciliation stage. After this stage, both parties use graph G for
zero-error interactive communication. We refer to this two-stage protocol as perfect reconciliation in the
sequel. The worst-case message length under this setup is referred to as l(n)R .

For the reconciliation stage, we first partition Q into groups of distributions with distinct support
sets, and denote by B the set of distinct bipartite graphs that correspond to the support sets of the
distributions in Q. This process is similar to the one described for P in Section 2.1. Next, we find a
lower bound for the minimum number of bits required for user 2 to learn the graph G, i.e., all (x, y)
pairs that may occur with positive probability under the true distribution p(x, y).

Definition 1. (Reconciliation graph) Define a characteristic graph R = (G, ER), in which each vertex represents
a graph G ∈ G. Recall that G is a set of bipartite graphs as we define in Section 2.1. An edge (G, G′) ∈ ER is
defined between vertices G and G′ if and only if there exists a B ∈ B such that EB ⊆ EG and EB ⊆ EG′ .

The minimum number of bits required for user 2 to perfectly learn G is then dlog χ(R)e, where χ(·)
denotes the chromatic number of a graph. This can be observed by noting that in the reconciliation
phase, any two nodes in the reconciliation graph with an edge in between has to be assigned to distinct
bit streams, otherwise user 2 will not be able to distinguish them, which requires a minimum of
dlog χ(R)e number of bits to be transmitted from user 1 to user 2. It is useful to note that perfect
reconciliation incurs a negligible cost for large blocklengths.

Proposition 2. Perfect reconciliation is an asymptotically optimal strategy.

Proof. Since the distributions p(x, y) and q(x, y) are fixed once chosen, reconciliation requires at
most dlog |R|e bits for any class of graphs G. Therefore its contribution on the codeword length per
symbol is 1

ndlog |R|e, which vanishes as n→ ∞. Since the communication cost for not reconciling the
graphs can never be lower than reconciling them, we can conclude that reconciling the graphs first,
and then using the reconciled graphs for communication, cannot perform worse than not reconciling
them. We note, however, that this statement may no longer hold if the joint distribution is arbitrarily
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varying over the course of n symbols, since correct recovery in this case may require the graphs to be
repeatedly reconciled.

In the following, we demonstrate a lower bound on the worst-case message length for this
two-stage reconciliation-communication protocol.

Lemma 1. A lower bound on the worst-case message length for the two-stage reconciliation-communication
protocol is,

l(n)R ≥ dlog χ(R)e
n

+ max
G∈G

max
(xn,yn)∈Sn

G

1
n
dlog |IG(xn, yn)|e. (24)

Proof. We prove Equation (24) by obtaining a lower bound on the message length for the reconciliation
and communication parts separately. The lower bound for the reconciliation part is determined by
bounding the minimum number of bits to be transmitted from user 1 to user 2 using Definition 1. As a
result, both sides learn the support set of the true distribution p(x, y). The lower bound in Equation (24)
then follows from

l(n)R ≥ dlog χ(R)e
n

+ max
G∈G

min
φ

max
(xn,yn)∈Sn

G

1
n
`(φ(xn, yn)) (25)

≥ dlog χ(R)e
n

+ max
G∈G

max
(xn,yn)∈Sn

G

min
φ

1
n
`(φ(xn, yn)) (26)

=
dlog χ(R)e

n
+ max

G∈G
max

(xn,yn)∈Sn
G

min
φ

1
n
`([φk(xn, yn)]rk=1) (27)

≥ dlog χ(R)e
n

+ max
G∈G

max
(xn,yn)∈Sn

G

1
n
dlog |IG(xn, yn)|e (28)

where Equation (26) follows from the min-max inequality and Equation (28) from Proposition 1.

We next demonstrate an upper bound for the minimum worst-case message length. Consider the
distribution p(x, y) and the corresponding bipartite graph G ∈ G. Let Gn

X = (X n, En
X) denote a

characteristic graph for user 1 with a vertex set X n. Vertices of Gn
X are the n-tuples xn ∈ X n. An edge

(xn, x̂n) ∈ En
X exists between xn ∈ X n and x̂n ∈ X n whenever some yn ∈ Y exists such that (xn, yn) ∈

Sn
G, (x̂n, yn) ∈ Sn

G and f n(xn, yn) 6= f n(x̂n, yn). Similarly, define a characteristic graph Gn
Y = (Yn, En

Y)

for user 2 whose vertices are the n-tuples yn ∈ Yn. An edge (yn, ŷn) ∈ En
Y exists between yn ∈ Yn

and ŷn ∈ Yn whenever some xn ∈ X n exists such that (xn, yn) ∈ Sn
G, (xn, ŷn) ∈ Sn

G, and f n(xn, yn) 6=
f n(xn, ŷn).

The characteristic graphs defined above are useful in that any valid coloring over the characteristic
graphs will enable the two parties to resolve the ambiguities in distinguishing the correct function
values. Figure 3 illustrates the characteristic graphs G1

X and G1
Y, respectively, constructed by using

p2(x, y) from Equation (20) and f (x, y) from Equation (19) in the example discussed in Section 2.2.
In the following, we follow the notation GX , G1

X and GY , G1
Y .
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Figure 3. Characteristic graphs (a) G1
X and (b) G1

Y constructed using distribution p2(x, y) in
Equation (20) and function f (x, y) in Equation (19).

Theorem 1. The worst-case message length for the two-stage separate reconciliation and communication
strategy satisfies

l(n)R ≤ dlog χ(R)e
n

+ max
G∈G

1
n
{dn log(χ(GX))e+ dn log(χ(GY))e} , (29)

Proof. Consider a minimum coloring for GX and GY using χ(GX) and χ(GY) colors. Note that Gn
X and

Gn
Y can be colored with at most (χ(GX))

n and (χ(GY))
n colors, respectively. Hence, users 1 and 2 can

simultaneously send the index of the color assigned to their symbols by using at most dn log χ(GX)e
and dn log χ(GY)e bits, respectively. Then, users can utilize the received color index and their own
symbols for correct recovery of the function values.

3.2. Protocols that Do Not Explicitly Start with a Reconciliation Procedure

Instead of the reconciliation-based strategy described in Section 3.1, the two users may choose
not to reconcile the distributions, but instead utilize a robust communication strategy that ensures
zero-error communication under any distribution in set P . Specifically, they can agree on a worst-case
communication strategy that always ensures zero-error communication for both users. In this section,
we study two specific protocols that do not explicitly start with a reconciliation procedure. We denote
the worst case message length in this setting as l(n)RF .

As an example of such a robust communication strategy, consider a scenario in which
user 1 enumerates each xn ∈ X n by using n log |X | bits whereas user 2 enumerates each yn ∈ Yn by
using n log |Y| bits. Then, by using no more than n log |X |+ n log |Y| bits in total, the two parties
can communicate their observed symbols with zero-error under any true distribution, and evaluate
f n(Xn, Yn). In that sense, this setup does not require any additional bits for learning about the
distribution from the other side either perfectly or partially, but the message length for communicating
the symbols is often higher. In the following, we derive an upper bound on the worst-case message
length based on two achievable protocols that do not start with a reconciliation procedure.

The first achievable strategy we consider is based on graph coloring. Let GX,G = (X , EX) be
a characteristic graph for user 1 whose vertex set is X . Define an edge (x, x̂) ∈ EX between nodes
x ∈ X and x̂ ∈ X whenever there exists some y ∈ Y such that (x, y) ∈ ⋃p∈P supp(p) and (x̂, y) ∈⋃

p∈P supp(p) whereas f (x, y) 6= f (x̂, y). Similarly, define a characteristic graph GY,G = (Y , EY)

for user 2 whose vertex set is Y . Define an edge (y, ŷ) ∈ EY between vertices y ∈ Y and ŷ ∈ Y
whenever there exists some x ∈ X such that (x, y) ∈ supp(p) and (x, ŷ) ∈ supp(p) for some p ∈ P
but f (x, y) 6= f (x, ŷ). We note the difference between the conditions for constructing GX,G and GY,G in
that the former is based on the union

⋃
p∈P whereas the latter is based on the existence for some p ∈ G.

This difference results from the fact that user 2 does not know the true distribution, hence needs to
distinguish the possible symbols from a group of distributions, whereas user 1 has the true distribution,
and can utilize it for eliminating the ambiguities for correct function recovery. We note however that
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both GX,G and GY,G depend on G. Lastly, we let χ(GX,G) and χ(GY,G) denote the chromatic number of
GX,G and GY,G , respectively.

Then, under any true distribution p ∈ P , the following communication protocol ensures zero error.
Suppose user 1 observes xn and user 2 observes yn from some distribution pn(xn, yn) = ∏n

i=1 p(xi, yi).
For each xi ∈ X where i = 1 . . . , n, user 1 sends the color of xi by using no more than dlog χ(GX,G)e
bits. After this step, user 2 can recover fi(xi, yi) by using yi as follows. Given yi, user 2 considers
the set of all xi ∈ X such that p(xi, yi) > 0 for some p ∈ P . Note that within this set, each color
represents a group of xi ∈ X for which fi(xi, yi) is equal. Therefore, under any true distribution p ∈ P ,
user 2 will be able to recover the correct fi(xi, yi) value solely by using the received color along with yi.
Similarly, for each yi ∈ Y , user 2 sends the color of yi by using no more than dlog χ(GY,G)e bits, after
which user 1 recovers fi(xi, yi) by using the received color and the true distribution p(x, y). Since user
1 knows the true distribution, it can distinguish any function value correctly as long as no two y, y′ ∈ Y
are assigned to the same codeword for which ∃x ∈ X such that (x, y) ∈ supp(p) and (x, y′) ∈ supp(p)
when f (x, y) 6= f (x, y′).

We then have the following upper bound on the worst-case message length,

l(n)RF ≤
1
n
(ndlog χ(GX,G)e+ndlog χ(GY,G)e)=dlog χ(GX,G)e+dlog χ(GY,G)e bits/symbol, (30)

where user 1 sends ndlog(χ(GX,G))e bits to user 2 whereas user 2 sends ndlog(χ(GY,G))e bits to user
1. After this step, both users can recover the correct function values f n(xn, yn) for any source pair
(xn, yn) ∈ supp(pn) under any p ∈ P .

The second achievable strategy we consider is based on perfect hash functions. A function
h : {1, . . . , N} → {1, . . . , k} is called a perfect hash function for a set S ⊆ {1, . . . , N} if for all x, y ∈ S such
that x 6= y, one has h(x) 6= h(y). Define a family of functionsH such that h : {1, . . . , N} → {1, . . . , k}
for all h ∈ H. If

M ≥ s(ln N)es2/k (31)

for some k ≥ s, then, there exists a family of |H| = M functions such that for every S ⊆ {1, . . . , N}with
|S| ≤ s, there exists a function h ∈ H that is injective (one-to-one) over S ([30], Section III.2.3). Perfect hash
functions have been proved to be useful for constructing zero-error interactive communication protocols
when the true distribution of the sources are known by both parties [7]. In the following, we extend the
interactive communication framework from [7] to the setting when the true distribution is unknown by
the communicating parties.

Initially, we construct a graph Ḡ(n) = (V, E) for user 2 with a vertex set V = Yn. In that sense,
each vertex of the graph is an n-tuple yn ∈ Yn. Define an edge (yn, ŷn) ∈ E between vertices yn ∈ Yn

and ŷn ∈ Yn if for some n-tuple xn ∈ X n that there exists some p ∈ P for which (xi, yi) ∈ supp(p) and
(xi, ŷi) ∈ supp(p) for all i = 1, . . . , n. Define a minimum coloring of this graph and let χ(Ḡ(n)) denote
the minimum number of required colors, i.e., the chromatic number of Ḡ(n). In that sense, any valid
coloring over this graph will enable user 1 to resolve the ambiguities in distinguishing the correct
n-tuple observed by user 2, under any true distribution p ∈ P .

We next define the following ambiguity set for each xn ∈ X n,

IX(xn) , {yn ∈ Yn : (xi, yi) ∈
⋃

p∈P
supp(p) for i = 1, . . . , n}, (32)

as the set of distinct yn sequences that may occur with respect to the support set
⋃

p∈P supp(p) under
the given sequence xn. We denote the size of the largest single-term ambiguity set as,

λ , max
x∈X
|IX(x)|, (33)



Entropy 2017, 19, 635 13 of 26

and note that maxxn∈X n |IX(xn)| = λn. Lastly, we define an ambiguity set for each yn ∈ Yn,

IY(yn) , { f n(xn, yn) ∈ Fn : xi ∈ X and (xi, yi) ∈
⋃

p∈P
supp(p) for i = 1, . . . , n}, (34)

as the set of distinct function values that may appear for the given sequence yn and with respect to the
support set

⋃
p∈P supp(p). We denote the size of the largest single-term ambiguity set as

µ , max
y∈Y
|IY(y)|, (35)

and note that maxyn∈Yn |IY(yn)| ≤ µn.
The interaction protocol is then given as follows. From Equation (31), there exists a familyH of

|H| = dλn(log χ(Ḡ(n)))ee (36)

functions such that h : {1, . . . , χ(Ḡ(n))} → {1, . . . , λ2n} for all h ∈ H and for each S ⊆ {1, . . . , χ(Ḡ(n))}
of size |S| ≤ λn, there exists an h ∈ H that is injective over S . In that sense, the colors assigned to an
ambiguity set IX(xn) for some xn ∈ X n will correspond to some S . Both users initially agree on such
a family of functionsH and a minimum coloring of graph Ḡ(n) with χ(Ḡ(n)) colors. Suppose user 1
observes xn ∈ X n and user 2 observes yn ∈ Yn. User 1 finds a function h ∈ H that is injective over the
colors assigned to vertices yn ∈ IX(xn) from Equation (32) and sends its index to user 2 by using no
more than

dlog |H|e = dlogdλn(log χ(Ḡ(n)))eee (37)

bits in total. After this step, user 2 evaluates the corresponding function for the assigned color of
yn and sends the evaluated value back to user 1 by using no more than dlog λ2ne bits. After this
step, user 1 will learn the color of yn, from which it can recover yn by using the observed xn. This is
due to the fact that from the definition of an ambiguity set IX(xn) in Equation (32), every n-tuple
yn ∈ IX(xn) for a given xn ∈ X n will receive a different color in the minimum coloring of the graph
Ḡ(n). Since the selected perfect hash function is one-to-one over the colors assigned to yn ∈ IX(xn),
it will allow user 1 to recover the color of yn from the evaluated hash function value. In the last step,
user 1 evaluates the function f n(xn, yn), and sends it to user 2 by using no more than dlog µne bits.
In doing so, she assigns a distinct index for each sequence of function values in the ambiguity set
IY(yn) from Equation (34). User 2 can then recover the function f n(xn, yn) by using yn and the received
index. Overall, this protocol requires no more than

dlogdλn(log χ(Ḡ(n)))eee+ d2n log λe+ dn log µe (38)

bits to be transmitted in total, therefore

l(n)NR ≤
1
n

(
dlogdλn(log χ(Ḡ(n)))eee+ d2n log λe+ dn log µe

)
(39)

≤ 1
n

(
dlog(λn(log χ(Ḡ(n)))e + 1)e+ 2n log λ + 1+ n log µ + 1

)
(40)

≤ 1
n

(
log(λn(log χ(Ḡ(n)))e + 1) + 2n log λ + n log µ + 3

)
(41)

≤ 1
n

(
log(λn(log χ(Ḡ(n)))e)+log

(
1+

1
λn(log χ(Ḡ(n)))e

)
+ 2n log λ + n log µ + 3

)
(42)

≤ 3 log λ + log µ +
1
n

log log χ(Ḡ(n)) +
4+ log e

n
(43)

≤ 3 log λ + log µ +
1
n

log n log χ(Ḡ(1)) +
4+ log e

n
(44)
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≤ 3 log λ + log µ +
1
n

log log χ(Ḡ(1)) +
log n

n
+

4+ log e
n

(45)

where Equation (42) follows from the fact that 1
λn(log χ(Ḡ(n)))e

≤ 1, and Equation (44) holds since

χ(Ḡ(n)) ≤ χn(Ḡ(1)). This is due to the fact that any coloring over the nth order strong product of Ḡ(1)

is also a valid coloring for Ḡ(n), since by construction of Ḡ(n), any edge that exists in Ḡ(n) also exists in
the nth order strong product of Ḡ(1). Therefore, the chromatic number of Ḡ(n) is no greater than the
chromatic number of the nth order product of Ḡ(1), which is no greater than χn(Ḡ(1)).

Combining the bounds obtained from the two protocols from Equations (30) and (45), we have
the following upper bound on the worst-case message length.

Proposition 3. The worst-case message length for the two strategies that do not explicitly start with a
reconciliation procedure can be upper bounded as,

l(n)RF ≤ min
{
dlog χ(GX,G)e+dlog χ(GY,G)e, 3 log λ+log µ+ 1

n log log χ(Ḡ(1)) +
log n

n +
4+log e

n

}
. (46)

Proof. The result follows from combining the two interaction strategies in Equations (30) and (45).

3.3. Partial Reconciliation

In order to understand the impact of level of reconciliation on the worst-case message length,
we consider a third scheme called partial reconciliation, which allows user 2 to distinguish the
true distribution up to a class of distributions, after which the two users use a robust worst-case
communication protocol that allows for zero-error communication in the presence of any distribution
within the class. In that sense, partial reconciliation allows some ambiguity in the reconciled set of
distributions. Accordingly, the schemes considered in Sections 3.1 and 3.2 are special cases of the
partial reconciliation scheme. We denote l(n)PR as the per-symbol worst-case message length for a finite
block of n source symbols under the partial reconciliation scheme. In the following, we demonstrate
two protocols for interactive communication with partial reconciliation. The first protocol is based on
coloring characteristic graphs, whereas the second protocol is based on perfect hash functions. We then
derive an upper bound on the worst-case message length with partial reconciliation.

For the first partial reconciliation protocol, consider the set G of bipartite graphs G = (X ,Y , EG)

constructed by using the distributions p ∈ P as described in Section 2.1. Define a partition of the set G
as A = {A1,A2, . . . ,A|A|} such that

⋃|A|
i=1Ai = G and Ai ∩Aj = ∅ for all i 6= j, where Ai is non-empty

for i ∈ {1, . . . , |A|}. Define Ā as the set of all such partitions of G.
Fix a partitionA ∈ Ā. For each i ∈ {1, . . . , |A|}, define a graph GX,Ai = (X , EX) for user 1 with the

vertex set X . Define an edge (x, x̂) ∈ EX between nodes x ∈ X and x̂ ∈ X if there exists some y ∈ Y
such that (x, y) ∈ ⋃G∈Ai

G and (x̂, y) ∈ ⋃G∈Ai
G whereas f (x, y) 6= f (x̂, y). Next, construct a graph

GY,Ai = (Y , EY) for user 2 with the vertex set Y . Define an edge (y, ŷ) between nodes y ∈ Y and ŷ ∈ Y
if there exists some x ∈ X such that (x, y) ∈ EG and (x, ŷ) ∈ EG for some G ∈ Ai but f (x, y) 6= f (x, ŷ).
Let χ(GX,Ai) and χ(GY,Ai) denote the chromatic number of GX,Ai and GY,Ai , respectively.

Then, under any true distribution p ∈ P , the following communication protocol ensures zero
error. The two users agree on a partition A ∈ Ā before communication starts. Suppose users 1 and
2 observe xn and yn, respectively, under the true distribution p(x, y). Let G = (X ,Y , EG) denote the
bipartite graph corresponding to the distribution p(x, y). Initially, user 1 sends the index i of the set
Ai ∈ A for which G ∈ Ai, by using no more than dlog |A|e bits. After this step, user 1 sends the
color of each symbol in xn according to the minimum coloring of graph GX,Ai by using no more than
ndlog χ(GX,Ai)e bits in total. By using the sequence of colors received from user 1, user 2 can determine
the correct function values f n(xn, yn). In the last step, user 2 sends the color of each symbol in yn
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according to graph GY,Ai by using no more than ndlog χ(GY,Ai)e bits. After this step, user 1 can recover
the function values f n(xn, yn). Overall, this protocol requires no more than

dlog |A|e+ max
i∈{1,...,|A|}

n
(
dlog χ(GX,Ai)e+ dlog χ(GY,Ai)e

)
, (47)

bits to be transmitted. Since one can leverage any partition within Ā for constructing the
communication protocol, we conclude that the worst-case message length for partial reconciliation is
bounded above by,

l(n)PR ≤min
A∈Ā

(
1
n
dlog |A|e+ max

i∈{1,...,|A|}

(
dlog χ(GX,Ai)e+ dlog χ(GY,Ai)e

))
. (48)

For the second partial reconciliation protocol, we again leverage perfect hash functions from
Equation (31). As in the first protocol, we define a partition of the set G asA = {A1,A2, . . . ,A|A|} such

that
⋃|A|

i=1Ai = G and Ai ∩Aj = ∅ for all i 6= j. We let Ā be the set of all such partitions of G.

We fix a partition A ∈ Ā of G. For each i ∈ {1, . . . , |A|}, we define a graph Ḡ(n)
i = (Yn, E) with

the vertex set Yn. We define an edge (yn, ŷn) ∈ E between two vertices yn ∈ Yn and ŷn ∈ Yn if there
exists some xn ∈ X n such that (xj, yj) ∈

⋃
G∈Ai

EG and (xj, ŷj) ∈
⋃

G∈Ai
EG for j = 1, . . . , n. We denote

the chromatic number of Ḡ(n)
i by χ(Ḡ(n)

i ).
We define an ambiguity set for each xn ∈ X n,

IX
i (xn) , {yn ∈ Yn : (xj, yj) ∈

⋃
G∈Ai

EG for j = 1, . . . , n} (49)

where the size of the largest single-term ambiguity set is given as,

λi , max
x∈X
|IX

i (x)|, (50)

and note that maxxn∈X n |IX
i (xn)| ≤ λn

i . Next, we define an ambiguity set for each yn ∈ Yn,

IY
i (y

n) , { f n(xn, yn) ∈ Fn : xj ∈ X and (xj, yj) ∈
⋃

G∈Ai

EG for j = 1, . . . , n} (51)

and define the size of the largest single-term ambiguity set as,

µi , max
y∈Y
|IY

i (y)|, (52)

where maxyn∈Yn |IY
i (y

n)| ≤ µn
i . Given i ∈ {1, . . . , |A|}, from Equation (31), there exists a familyH of

|H| = dλn
i (log χ(Ḡ(n)

i ))ee (53)

functions such that h : {1, . . . , χ(Ḡ(n)
i )} → {1, . . . , λ2n

i } for all h ∈ H and for each S ⊆ {1, . . . , χ(Ḡ(n)
i )}

of size |S| ≤ λn
i , there exists an h ∈ H injective over S . For each i ∈ {1, . . . , |A|}, the two users agree

on a family of functionsH and a coloring of graph Ḡ(n)
i with χ(Ḡ(n)

i ) colors. Suppose user 1 observes
xn ∈ X n and user 2 observes yn ∈ Yn. User 1 sends the index of the partition for p to user 2 by using
no more than dlog |A|e bits. User 1 then finds a function h ∈ H that is injective over the colors of the
vertices yn ∈ IX

i (xn) from Equation (49) and sends its index to user 2 by using no more than

dlog |H|e = dlogdλn
i (log χ(Ḡ(n)

i ))eee (54)
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bits. User 2 then evaluates the corresponding function for the assigned color of yn and sends it back to
user 1 by using no more than dlog λ2n

i e bits. After this step, user 1 learns the color of yn, from which it
recovers yn by using the observed xn. User 1 then evaluates the function f n(xn, yn), and sends it to
user 2 by using no more than dlog µn

i e bits. In doing so, she assigns a distinct index for each sequence
of function values in the ambiguity set IY

i (y
n) from Equation (34). User 2 can then recover the function

f n(xn, yn) by using yn and the received index. Overall, this protocol requires no more than

dlogdλn
i (log χ(Ḡ(n)

i ))eee+ d2n log λie+ dn log µie (55)

bits to be transmitted in total, therefore

l(n)PR ≤ min
A∈Ā

1
n

(
dlog |A|e+ max

i∈{1,...,|A|}

(
dlogdλn

i (log χ(Ḡ(n)
i ))eee+ d2n log λie+ dn log µie

))
(56)

≤ min
A∈Ā

(
1
n
dlog |A|e+ max

i∈{1,...,|A|}

(
3 log λi + log µi +

1
n

log log χ(Ḡ(1)
i ) +

log n
n

+
4+ log e

n

))
(57)

Combining the bounds obtained from the two protocols in Equations (48) and (57), we have the
following upper bound on the worst-case message length with partial reconciliation,

l(n)PR ≤min
A∈Ā

(
1
n
dlog |A|e+min

{
max

i∈{1,...,|A|}

(
dlog χ(GX,Ai)e+dlog χ(GY,Ai)e

)
, max

i∈{1,...,|A|}

(
3 log λi

+ log µi +
1
n

log log χ(Ḡ(1)
i ) +

log n
n

+
4+ log e

n

)})
.

(58)

At the outset, partial reconciliation characterizes the interplay between reconciliation and
communication costs. In order to understand this inherent reconciliation-communication trade-off,
we next identify the cases for which reconciling the missing information is better or worse than
not reconciling them. To do so, we provide sufficient conditions under which reconciliation-based
strategies can outperform the strategies that do not start with a reconciliation procedure, and vice
versa, and show that either strategy can outperform the other. Finally, we demonstrate that partial
reconciliation can strictly outperform both.

4. Cases in which Strategies that Do Not Start with a Reconciliation Procedure is Better than
Perfect Reconciliation

In this section, we demonstrate that strategies with no explicit reconciliation step can be strictly
better than perfect reconciliation.

Proposition 4. Strategies that do not start with an explicit reconciliation procedure is better than perfect
reconciliation if

dlog χ(R)e
n

+max
G∈G

max
(xn,yn)∈Sn

G

1
n
dlog |IG(xn, yn)|e

>min
{
dlog χ(GX,G)e+dlog χ(GY,G)e, 3 log λ+log µ+

1
n

log log χ(Ḡ(1))+
log n

n
+

4+log e
n

}
.

(59)

Proof. The result follows from comparing the lower bound on the number of bits required for the
perfect reconciliation setting from Equation (24) with the upper bound from Equation (58).

Corollary 1. Strategies with no explicit reconciliation step can strictly outperform perfect reconciliation.

Proof. Consider a scenario in which there exists a parent distribution p∗ ∈ P such that supp(p) ⊆
supp(p∗) for all p ∈ P , then, reconciliation cannot perform better than the strategies with no explicit
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reconciliation step. This immediately follows from: (i) any zero-error communication strategy for
p∗ is a valid strategy with no explicit reconciliation step, since

⋃
p∈P supp(p) = supp(p∗), (ii) any

perfect reconciliation scheme should ensure a valid zero-error communication strategy for p∗, as it
may appear as the true distribution. Therefore, reconciling distributions cannot decrease the overall
message length. Suppose that there exists some q ∈ Q for which supp(q) ⊆ supp(p) for all p ∈ P .
Then, Corollary 1 holds whenever |P| > 1.

We next consider the following example to elaborate on the impact of overlap between the edges
of bipartite graphs on the worst-case message length. To do so, we let n = 1 and investigate the
following class of graphs.

Definition 2. (Z-Graph) Consider a class of graphs G for which there exists a single (x, y) ∈ X ×Y such that
(x, y) ∈ EG for all G ∈ G. Additionally, assume that for any (x̂, ŷ) ∈ X ×Y such that (x̂, ŷ) ∈ EG for some
G ∈ G, then either x = x̂ or y = ŷ. In that sense, the structure of these graphs resemble a Z shape, hence we
refer to them as Z-graphs. For this class of graphs, λG = λG(x) and µG = µG(y) for any G ∈ G.

Lemma 2. Consider the class of graphs defined in Definition 2. For this class of graphs, the worst-case message
length for strategies with no explicit reconciliation step satisfies,

l(1)RF ≤ dlog χ(GY,G)e+ dlog µGe (60)

where dlog χ(GY,G)e is defined in Section 3.2 and µG = maxy∈Y | ∪G∈G IY,G(y)| such that IY,G(y) is as given
in Equation (12).

Proof. Consider the following encoding scheme. Group all the neighbors x′ ∈ X of y in ∪G∈GG that
lead to the same function value f (x′, y). Assign a single distinct codeword to each of these groups.
User 1 sends the corresponding codeword to user 2, which requires no more than dlog µGe bits, after
which user 2 can recover the correct function value. Next, construct the graph GY,G as defined in
Section 3.2. Find the minimum coloring of GY,G , and assign a distinct codeword to each of the colors.
User 2 then sends the corresponding codeword to user 1, by using no more than dlog χ(GY,G)e bits.
Note that user 1 can infer the correct function value after this step, as she already knows the bipartite
graph G that corresponds to the true distribution and given x and G, each color represents a distinct
function value.

Example 1. Consider the framework of Section 3.1 along with a class of Z-graphs G = {G1, G2} and B =

{B1, B2}. That is, G1, G2, B1, B2 share an edge (x, y) ∈ X ×Y such that (x, y) ∈ EG1 , EG2 , EB1 , EB2 . Moreover,
for any other edge (x̂, ŷ) ∈ X ×Y , either x̂ = x or ŷ = y. Assume that f (x, y) is distinct for each edge (x, y) in
G. Let

ω , |{(x̂, y) : (x̂, y) ∈ EG1 , EG2 , x̂ ∈ X}| (61)

represent the number of common edges, i.e., overlap, between G1 and G2, where 1 ≤ ω ≤ min{µG1 , µG2}.
Note that the overlap between G1 and G2 can only consist of the edges that share the endpoint y. We consider the
following four cases that may occur for the relations between the structures of the graphs G1, G2, B1, B2.

1. EB1 ⊆ EG1 , EB2 * EG1 , EB1 * EG2 , EB2 ⊆ EG2 . In this case, no reconciliation is always better than
reconciliation, because whenever user 2 observes B1 (respectively B2), he can infer that user 1 knows G1

(respectively G2).
2. EB1 ⊆ EG1 , EB2 ⊆ EG1 , EB1 * EG2 , EB2 * EG2 . In this case, no reconciliation is again optimal as user 2

can infer that user 1 is knows G1 whenever he observes B1 or B2.
3. EB1 * EG1 , EB2 * EG1 , EB1 ⊆ EG2 , EB2 ⊆ EG2 . Then, no reconciliation is again optimal as user 2 can

infer that user 1 knows G2 if she observes B2 or B1.
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4. EB1 * EG1 , EB2 ⊆ EG1 , EB1 ⊆ EG2 , EB2 ⊆ EG2 . In this case, the chromatic number of the reconciliation
graph is given by χ(R) = 2 from Definition 1. Then the worst-case message length for the perfect
reconciliation scheme satisfies,

l(1)R ≥ 1+max{dlog(λG1 + µG1 − 1)e, dlog λG2 + µG2 − 1e}. (62)

which follows from Lemma 1. On the other hand, we find that the worst-case message length for the no
reconciliation scheme satisfies

l(1)RF ≤ max{dlog(λG1)e, dlog(λG2)e}+ dlog(µG1 + µG2 −ω)e, (63)

which follows from Lemma 2 and the following coloring scheme. Suppose max{λG1 , λG2} = λG1 .
Using λG1 colors, assign each ŷ ∈ Y that is connected to x in G1 a distinct color. Next, take λG2 of
these colors excluding the color assigned to node y, and color each ŷ 6= y that is connected to x in G2

with a distinct color. Note that this is a valid coloring since there are only two bipartite graphs G1 and
G2, corresponding to two cliques whose sizes are λG1 and λG2 in the characteristic graph and the only
common node between these two cliques is y. Furthermore, no edge exists across the two cliques. Hence, no
reconciliation is better than perfect reconciliation whenever

max{dlog λG1e,dlog λG2e}+ dlog(µG1 + µG2 −ω)e
< 1+max{dlog(λG1 + µG1 − 1)e, dlog(λG2 + µG2 − 1)e}.

(64)

As an example, consider the graphs illustrated in Figure 4 for which λG1 = λG2 = µG1 = µG2 = 2 and
ω = µG1 = µG2 . The corresponding characteristic graph and coloring of GY,G is illustrated in Figure 5.
For this case, we observe that no reconciliation is always better than reconciliation.
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x

y

G1 G2 B2B1

1 11 11 1 1 1
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2222222

3 3 3 3 3 3 3 3
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Figure 4. Example graphs G = {G1, G2} and B = {B1, B2}, where λG1 = λG2 = µG1 = µG2 = 2.

y 1

4

2

3

GY,G

Figure 5. Coloring of the characteristic graph GY,G .

We note that the performance of a particular communication strategy with respect to others
greatly depends on the structure of the partial information as well as the true probability distribution
of the observed symbols. In the following section, we show that there exist cases for which reconciling
the true distribution only partially can lead to better worst-case message length then both the strategies
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from Sections 3.1 and 3.2, indicating that the best communication strategy under partial information
may result from a balance between reconciliation and communication costs.

5. Cases in Which Partial Reconciliation is Better

We now investigate the conditions under which partially reconciling the graph information
is better than perfect reconciliation. To do so, we initially compare the perfect and partial
reconciliation strategies.

Proposition 5. Partial reconciliation is better than perfect reconciliation if

dlog χ(R)e
n

+ max
G∈G

max
(xn ,yn)∈Sn

G

1
n
dlog |IG(xn, yn)|e

> min
A∈Ā

(
1
n
dlog |A|e+ min

{
max

i∈{1,...,|A|}

(
dlog χ(GX,Ai )e+dlog χ(GY,Ai )e

)
, max

i∈{1,...,|A|}

(
3 log λi (65)

+ log µi +
1
n

log log χ(Ḡ(1)
i ) +

log n
n

+
4 + log e

n

)})
.

Proof. The right-hand side of Equation (65) is an upper bound on the zero-error message length
with partial reconciliation from Equation (58), whereas the left-hand side lower bounds the zero-error
codeword length for perfect reconciliation via Equation (24), from which Equation (65) follows.

We next show that there exist cases for which partial reconciliation strictly outperforms the
strategies from Sections 3.1 and 3.2. To do so, we let n = 1 and again focus on the class of graphs
introduced in Definition 2. First, we present an upper bound on the worst-case message length with
partial reconciliation for Z-graphs.

Lemma 3. The worst-case message length with partial reconciliation for the class of graphs from Definition 2
can be upper bounded by,

l(1)PR ≤ min
A∈Ā

(
dlog |A|e+ max

i∈{1,...,|A|}

(
dlog χ(GY,Ai )e+ dlog µAie

))
(66)

where dlog χ(GY,Ai )e is as defined in Section 3.3 and µAi = maxy∈Y | ∪G∈Ai IY,G(y)| with IY,G(y) as
described in Equation (12).

Proof. To prove achievability, note that for a given partition A, at least dlog |A|e bits are
necessary for sending the partition index, which reconciles each graph up to the class of graphs
in the partition it is assigned to. After reconciliation, zero-error communication requires no
more than maxi:Ai∈A

(
dlog χ(GY,Ai)e+ dlog µAie

)
in the worst-case. We show this by considering

an encoding scheme that ensures zero-error communication for any graph in Ai by using(
dlog χ(GY,Ai)e+ dlog µAie

)
bits. Group all the neighbors x′ ∈ X of y in ∪G∈Ai G that lead to the

same function value f (x′, y). Assign a single distinct codeword to each of these groups. Note that this
requires no more than dlog µAie bits in total. Next, for a given partitionAi, construct the graph GY,Ai as
defined in Section 3.3. Find the minimum coloring of GY,Ai , and assign a distinct codeword to each
of the colors, which requires no more than dlog χ(GY,Ai)e bits in total. Then, fix a partitioning A of G
and use the following communication scheme. User 1, using the partition A, sends the index of the
group in which her graph G resides. Then, users 1 and 2 use a robust communication scheme for all the
graphs contained in this group. To do so, user 1 sends the codeword assigned to x′ ∈ X by using no
more than dlog µAie bits, after which user 2 can recover the correct function value. Then, user 2 sends
the color assigned to y′ ∈ Y using no more than dlog χ(GY,Ai)e bits, after which user 1 can learn the
correct function value.
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Proposition 6. Partial reconciliation can strictly outperform the strategies from Sections 3.1 and 3.2.

Proof. Consider the set of Z-graphs G = {G1, G2, G3} and B = {B} in Figure 6. The edge sets satisfy
EG3 ⊂ EG1 , EG2 ∩ EG1 = {(x, y)}, and EB = {(x, y)}.
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x
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...
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x

y
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...

x

y

...

...
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...

G1 G2 G3 B

G1 G2

G3

R

Figure 6. Bipartite graphs G = {G1, G2, G3}, B = {B}, and the corresponding reconciliation graph R.

Let f (x, y) be distinct for each edge (x, y) in G, and that λGi ≥ 2 for some i ∈ {1, 2}.
First, consider the protocol from Section 3.2. It can be shown that this protocol satisfies

l(1)RF ≥ 1 + dlog(µG1 + µG2 − 1)e (67)

which results from the following observation. From Proposition 1, it follows that if (x′, y), (x′′, y) ∈ EGi

for some i ∈ {1, 2, 3}, then [φX
k (x′, φk−1(x′, y))]rk=1 cannot be a prefix of [φX

k (x′′, φk−1(x′′, y))]rk=1,
where [φX

k (x′, φk−1(x′, y))]rk=1 is the sequence of bits sent by user 1 in r rounds. Next, suppose that
for some (x′, y) ∈ EGi and (x′′, y) ∈ EGj where i 6= j, and [φX

k (x′, φk−1(x′, y))]rk=1 is a prefix of

[φX
k (x′′, φk−1(x′′, y))]rk=1. Since user 2 does not know the true distribution, she cannot distinguish

between x′ and x′′, causing an error since (x′, y) and (x′′, y) lead to different function values. This in
turn violates the zero-error condition. As a result, [φX

k (x, φk−1(x, y))]rk=1 should be prefix free for all
x ∈ IY(y) defined in Equation (34) whose size is µG1 + µG2 − 1. Therefore, user 1 needs to send at
least dlog(µG1 + µG2 − 1)e bits to user 2. Next, we demonstrate that user 2 needs to send at least 1 bit
to user 1. Suppose that this is not true, i.e., user 2 does not send anything. Since λGi ≥ 2 for some
i ∈ {1, 2}, in this case user 1 will not be able to distinguish between two distinct function values for
at least one graph that may occur at user 1. Therefore, by contradiction, Equation (67) provides a
lower bound for Z-graphs for the protocols that do not start with a reconciliation strategy considered
in Section 3.2.

Next, consider the perfect reconciliation protocol. For this scheme, we construct the reconciliation
graph R as given in Figure 6, and observe that any encoding strategy that allows user 2 to distinguish
the graph of user 1 requires 3 colors (distinct codewords). After this step, both users consider one of
G1, G2, or G3. Then,

l(1)R ≥ dlog 3e+ max
Gi∈G
dlog(λGi + µGi − 1)e (68)

which follows from Lemma 1 with the observation that |IGi (x, y)| = λGi + µGi − 1 for i ∈ {1, 2, 3}.
Lastly, consider the partial reconciliation protocol. In particular, consider a partial reconciliation

scheme achieved by the partitioning A = {A1,A2} such that A1 = {G1, G3}, and A2 = {G2}. Then,
from Equation (66), we obtain

l(1)PR ≤ log 2 + max{dlog λG1e+dlog µG1e,dlog λG2e+dlog µG2e}. (69)
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Therefore, whenever λG1 , λG2 , µG1 , µG2 satisfy

log 2 + max{dlog λG1e+dlog µG1e,dlog λG2e+dlog µG2e} < 1 + dlog(µG1 + µG2 − 1)e, (70)

then, partial reconciliation outperforms the strategies from Section 3.2. On the other hand, whenever
λG1 , λG2 , µG1 , µG2 satisfy

log 2 + max{dlog λG1e+dlog µG1e,dlog λG2e+dlog µG2e}
< dlog 3e+ max{dlog(λG1 + µG1 − 1)e, dlog(λG2 + µG2 − 1)e},

(71)

then, partial reconciliation outperforms the perfect reconciliation scheme. By setting λG1 = 2, µG1 = 8,

λG2 = 1, µG2 = 16, we observe that l(1)PR ≤ 5 whereas l(1)R ≥ 6 and l(1)RF ≥ 6 and both Equations (70) and
(71) are satisfied, from which Proposition 6 follows.

Therefore, under certain settings, it is strictly better to design the interaction protocols to allow the
communicating parties to agree on the true source distribution only partially, than to learn it perfectly
or not learn it at all, pointing to an inherent reconciliation-communication tradeoff.

6. Communication Strategies with Symmetric Priors

In this section we let P = Q and |P| = 1 and specialize the communication model to the
conventional function computation scenario where the true distribution p(x, y) of the sources is known
by both users. Users thus share a common bipartite graph G = (X ,Y , E) which they can leverage for
interactive communication. We first state a simple lower bound on the worst-case message length.

Proposition 7. A lower bound on the worst-case message length when the true distribution is known by both
parties is,

l(n) ≥ max
(xn ,yn)∈Sn

G

1
n
dlog |IG(xn, yn)|e. (72)

Proof. For the worst-case codeword length, we have

l(n) = min
φ

max
(xn ,yn)∈Sn

G

1
n
`(φ(xn, yn)) (73)

≥ max
(xn ,yn)∈Sn

G

min
φ

1
n
`(φ(xn, yn)) (74)

≥ max
(xn ,yn)∈Sn

G

1
n
dlog |IG(xn, yn)|e (75)

where Equation (74) follows from the min-max inequality whereas Equation (75) follows from
Proposition 1.

We next consider the upper bounds on the worst-case message length for this scenario. A simple
upper bound can be obtained via the graph coloring approach in Theorem 1,

l(n) ≤ 1
n
{dn log(χ(GX))e+ dn log(χ(GY))e} , (76)

where the characteristic graphs GX and GY are constructed as in Theorem 1 using the bipartite graph
corresponding to the true distribution p(x, y). We note that Equation (76) implies that

lim
n→∞

l(n) ≤ log(χ(GX)) + log(χ(GY)). (77)
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The above approach may yield limited gains for compression for large values of χ(GX) and χ(GY),
and another round of interaction may help reduce the compression rate. We next provide another
upper bound that combines graph coloring and hypergraph partitioning. To do so, we first review the
following notable results. The first one is a technical result regarding partitioning hypergraphs.

Lemma 4 ([1]). Define Γ = (V, E) to be a hypergraph with a vertex set of size |V|, and the hyperedges Em ⊆ V
with m = 1, . . . , |E|. Assume that each hyperedge has at most κ elements, i.e., |Em| ≤ κ. Then for any given
ε > 0, there exists a constant ρ(ε) such that ∀s ≥ (ln

√
|V||E|)1+ε and s > 1, a partition V1, V2, . . . V⌈ κ

s ρ(ε)
⌉

of V can be found with |Vk ∩ Em| < s for all m = 1, . . . , |E| and k = 1, . . . ,
⌈

κ
s ρ(ε)

⌉
.

We can now state the second useful result.

Lemma 5 ([1]). The following worst-case codeword length can be achieved in three rounds for n = 1,

l(1) ≤ log ∆X + log ∆Y + (1 + ε) log
(

log
√
|X ||Y|

)
+ 2 log ρ(ε) + 5. (78)

where each person makes two non-empty transmissions.

We next derive an upper bound based on Lemma 5 by increasing the number of interaction rounds
and following a sequential hypergraph partitioning approach. This allows the proposed scheme to work
in low-rate communication environments when parties do not mind having extra rounds of interaction.

Theorem 2. Given a joint probability distribution p(x, y), consider the corresponding bipartite graph
G = (X ,Y , E). Consider a partition of X n into d ∆n

Y
(ln
√
|X n ||Yn |)1+ε

ρ(ε)e groups such that for each group

X n
u ,

|X n
u ∩ {xn : (xn, yn) ∈ Sn, xn ∈ X n} | ≤ (ln

√
|X n||Yn|)1+ε, ∀yn ∈ Yn, (79)

where u = 1, . . . ,
⌈

min{∆n
X ,∆n

Y}
(n ln
√
|X ||Y|)1+ε

ρ(ε)
⌉

. Then, the worst-case codeword length with four total rounds can be

bounded by using sequential hypergraph partitioning as

l(n) ≤ log ∆X + log ∆Y +
(1 + ε)

n
log (log

√
γn) +

2
n

log ρ(ε) +
5
n

(80)

where γn = max
u

(
|X n

u | ×min{∆n
X |X n

u |, |Yn|}
)
≤ |X |n|Y|n.

Proof. Our proof builds upon [1] as follows. The set of symbols in the first round are fromX n andYn for
users 1 and 2, respectively. We assume ∆X > ∆Y without loss of generality. Let s1 = (ln

√
|X n||Yn|)1+ε.

From Lemma 4, X n can be partitioned into d∆n
Y

s1
ρ(ε)e groups such that for each group X n

u ,

|X n
u ∩ {xn : (xn, yn) ∈ Sn, xn ∈ X n} | ≤ s1, ∀yn ∈ Yn, (81)

where u = 1, . . . , d∆n
Y

s1
ρ(ε)e. In this round, user 1 sends the index of the group that her symbol resides

in by using no more than dlog (
∆n

Y
s1

ρ(ε))e bits, and user 2 makes a null transmission. Let û be the index
of the group sent by user 1 in the first round. In the second round, the following set is considered by
user 2 after receiving the index from user 1

Yn
û = {yn : (xn, yn) ∈ Sn, xn ∈ X n

û , yn ∈ Yn} . (82)
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Note that |Yn
û | ≤ min{∆n

X|X n
û |, |Yn|}. Next, consider a hypergraph Γ = (V, E) with the vertex set

V = Yn
û and define a hyperedge for each xn ∈ X n

û as follows.

Exn = {yn : (xn, yn) ∈ Sn, yn ∈ Yn
û}, (83)

where |E| = |X n
û |, and |Exn | ≤ ∆n

X, xn ∈ X n
û . User 1 can also determine this set by using the group

index for her symbol and the relations between the function values of both parties. Let

s2û =

(
ln
√
|V||E|

)1+ε

=

(
ln
√
|Yn

û ||X n
û |
)1+ε

≤ s1. (84)

User 2 then partitions Yn
û into d∆n

X
s2û

ρ(ε)e groups and sends the group index for his symbol,

which requires no more than dlog (
∆n

X
s2û

ρ(ε))e bits. After receiving the group index, user 1 has to decide
from at most s2û possible symbols from user 2.

In the third round, symbols are now restricted to a subspace of X n ×Yn with at most s1 possible
symbols from user 1 for each symbol from user 2 and at most s2û possible symbols from user 2 for
each one of the symbols of user 1. Then, by using ([1], Lemma 2), one can find that no more than
dlog(s1)e+ 2dlog(s2û)e bits are required.

This scheme requires four rounds of interaction in total; each person makes two non-empty
transmissions. The total number of bits required in the worst-case satisfies

l(n) ≤ 1
n

max
u

(⌈
log
(∆n

Y
s1

ρ(ε)
)⌉

+
⌈

log
(∆n

X
s2u

ρ(ε)
)⌉

+ dlog s1e+ 2dlog s2ue
)

(85)

≤ 1
n

max
u

(
log ∆n

Y + log ∆n
X + log s2u + 2 log ρ(ε) + 5

)
(86)

≤ log ∆X + log ∆Y +
1
n
((1 + ε) log (log

√
γn) + 2 log ρ(ε) + 5) , (87)

where γn = max
u

(
|X n

u ||Yn
u |
)
≤ |X |n|Y|n.

Corollary 2. In the limit of large block lengths, the upper bound of Theorem 2 satisfies

lim
n→∞

l(n) = log ∆X + log ∆Y. (88)

Proof. As |X n
u | ≤ |X n| and |Yn

u | ≤ |Yn| for all partitions u of X n and Yn, from Theorem 2,

lim
n→∞

l(n) ≤ lim
n→∞

(
log ∆X+log ∆Y+

(1+ε)

n
log
(

log
√
|X ||Y|

)
+(1+ε)

log n
n

+
2
n

log ρ(ε)+
5
n

)
= log ∆X + log ∆Y.

(89)

Lemma 5 and Theorem 2 apply the hypergraph partitioning technique to the bipartite graph of
the joint distribution p(x, y), but provide achievable rates by first performing source reconstruction at
the two ends, after which both users can compute the correct function value. The next theorem takes
the function values into account while constructing the hypergraph partitioning algorithm, with the
use of characteristic graphs.

Consider any valid coloring of the characteristic graphs Gn
X and Gn

Y defined in Section 3.1.
Note that by using their own symbols, each user can recover the correct function values upon receiving
the color from the other user. The problem now reduces to sharing the colors between the two parties
correctly, for which we apply sequential hypergraph partitioning to the colors of the graphs Gn

X and Gn
Y.
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Theorem 3. Define a coloring α : Gn
X → Cα for Gn

X with |Cα| colors, and a coloring β : Gn
Y → Cβ for Gn

Y with
|Cβ| colors. Let c(xn) and c(yn) denote the colors assigned to xn and yn by the colorings α and β, respectively.
Define the ambiguity set for color cX ∈ Cα as

JX(cX) , {cY ∈ Cβ : (xn, yn) ∈ Sn, c(xn) = cX, c(yn) = cY} (90)

with the size bound ∆(n)
Xα , maxcX∈Cα

|JX(cX)|, and the ambiguity set for color cY ∈ Cβ as

JY(cY) , {cX ∈ Cα : (xn, yn) ∈ Sn, c(xn) = cX, c(yn) = cY} (91)

with the size bound ∆(n)
Yβ , maxcY∈Cβ

|JY(cY)|. Consider a partition of Cα into
⌈ min{∆(n)

Xα ,∆(n)
Yβ }

(ln
√
|Cα||Cβ|)1+ε

ρ(ε)
⌉

groups

such that for each group Cαu,

|Cαu ∩ JY(cY)| ≤
(

ln
√
|Cα||Cβ|

)1+ε
∀cY ∈ Cβ, (92)

and
Cβu , {cY ∈ Cβ : (xn, yn) ∈ Sn, c(xn) = cX ∈ Cαu, c(yn) = cY}. (93)

where u = 1, . . . ,
⌈ min{∆(n)

Xα ,∆(n)
Yβ }

(ln
√
|Cα||Cβ|)1+ε

ρ(ε)
⌉

. Then, the worst-case message length can be upper bounded as,

l(n) ≤ min
α,β

 log ∆(n)
Xα

n
+

log ∆(n)
Yβ

n
+

(1 + ε)

n
log
(

log
√

γα,β

)
+

2
n

log ρ(ε) +
5
n

 , (94)

where γα,β = max
u

(
|Cαu||Cβu|

)
.

Proof. Assume ∆(n)
Xα > ∆(n)

Yβ without loss of generality. Choose s1 = (ln
√
|Cα||Cβ|)1+ε. Partition Cα

into d∆(n)
Yβ

s1
ρ(ε)e groups such that in each partition the number of colors from the ambiguity set is no

greater than s1. Hence, for any cY ∈ Cβ,

|Cαu ∩ {cX : (xn, yn) ∈ Sn, c(xn) = cX ∈ Cα, c(yn) = cY}| ≤ s1, (95)

for u = 1, . . . , d∆(n)
Yα
s1

ρ(ε)e. In the first round, user 1 sends the index of the partition the color of her

symbols lies in. This requires at most dlog (
∆(n)

Yβ

s1
ρ(ε))e bits, whereas user 2 makes an empty transmission.

Denote û as the index of the partition sent from user 1. In the second round, upon receiving û from
user 1, user 2 considers a set Cβû given as u = û in Equation (93), where |Cβ,û| ≤ min{λ̃max|Cαû|, |Cβ|}.
Define a hypergraph Γ = (V, E) with a vertex set V = Cβû and a hyperedge EcX = {cY : (xn, yn) ∈
Sn, c(yn) = cY ∈ Cβû, c(xn) = cX} for each cX ∈ Cαû such that |E| = |Cαû|, and |EcX | ≤ ∆(n)

Xα for every

cX ∈ Cαû. Define s2û = (ln
√
|V||E|)1+ε = (ln

√
|Cβû||Cαû|)1+ε < s1 and partition Cβû into d∆(n)

Xα
s2û

ρ(ε)e

to groups so that user 2 can send the index of his symbols with at most dlog (
∆(n)

Xα
s2û

ρ(ε))e bits. Upon
receiving the index, user 1 can reduce the number of possible symbols from user 2 to at most s2û.
Colors in the third round are restricted to a subset of Cα × Cβ such that for every color from user 1
(user 2), there are at most s2û (s1) possible colors exist from user 2 (user 1). Then Equation (94) follows
from ([1], Lemma 2).

It can be observed from Equation (94) that different codeword lengths are obtained by different
colorings, since they lead to different color and ambiguity set sizes. In general, there exists a trade-off
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between the ambiguity set sizes and the number of colors, such that using a smaller number of colors
may in turn increase the ambiguity set sizes. The exact nature of the bound depends on the graphical
structures such as degree and connectivity, however, any valid coloring allows error-free recovery.
For instance, assigning a distinct color to each element of X n and Yn is a valid coloring scheme.
If one restricts oneself to such set of colorings, the coding scheme of Theorem 3 will reduce to that of
Theorem 2, hence the bound in Theorem 3 generalizes the achievable protocols in Theorem 2.

7. Conclusions

In this paper, we have considered a communication scenario in which two parties interact to
compute a function of two correlated sources with zero error. The prior distribution available at one
of the communicating parties is possibly different from the true distribution of the sources. In this
setting, we have studied the impact of reconciling the missing information about the true distribution
prior to communication on the worst-case message length. We have identified sufficient conditions
under which reconciling the partial information is better or worse than not reconciling it but instead
using a robust communication protocol that ensures zero-error recovery despite the asymmetry in
the knowledge of the distribution. Accordingly, we have provided upper and lower bounds on the
worst-case message length for computing multiple descriptions of the given function. Our results
point to an inherent reconciliation-communication tradeoff, in that an increased reconciliation cost
often leads to a lower communication cost. A number of interesting future directions remain. In this
paper, we do not consider additional strategies which consider further information that may be
revealed by the function realizations on the support set. Developing interaction strategies that leverage
this information is another interesting future direction. A second one is finding the optimal joint
reconciliation-communication strategy in general and the study of alternative upper bounds that take
into account the specific structure of the function and input distributions. Another interesting direction
is to model the case where knowledge asymmetry is due to one party having superfluous information.
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