
Interactive Function Compression with Asymmetric Priors

Basak Guler∗ Aylin Yener∗ Ebrahim MolavianJazi∗ Prithwish Basu†

Ananthram Swami∗∗ Carl Andersen‡

∗The Pennsylvania State University †Raytheon BBN Technologies
University Park, PA Cambridge, MA

{basak,ebrahim}@psu.edu yener@ee.psu.edu pbasu@bbn.com

∗∗Army Research Laboratory ‡Raytheon BBN Technologies
Adelphi, MD Rosslyn, VA

a.swami@ieee.org canderse@bbn.com

Abstract

We study the interactive compression of an arbitrary function of two discrete sources with
zero-error. The information on the joint distribution of the sources available at the two sides
is asymmetric, in that one user knows the true distribution, whereas the other user observes
a different distribution. This paper considers the minimum worst-case zero-error codeword
length under such asymmetric prior distributions. We investigate the cases for which recon-
ciling the information mismatch is better or worse than not reconciling it, but instead using
an encoding scheme that ensures zero-error with possibly increased communication rate.
Our results indicate a reconciliation-communication tradeoff and that there exist cases for
which partially reconciling the mismatched information is better than both perfect reconcil-
iation and no reconciliation.

1 Introduction

In networked systems such as the social media, human-computer interaction, and cyber-
physical systems, interaction often takes place between sources with different backgrounds,
characteristics, and knowledge bases. These differences lead to different interpretations of
the same information. Motivated by such scenarios, we consider zero-error interactive
function computation of two correlated sources when the communicating parties may have
mismatched information about the true source distribution.

The impact of interaction on the data compression performance has been investigated
when both parties know the true distribution of the sources. Interactive compression of
correlated sources has been studied in [1] for recovering the sources with zero-error. In [2]
and [3], interactive communication has been leveraged to enable zero-error and non-zero
error recovery of the information known by one party at the other side, respectively. In-
teractive communication has been utilized in [4] for computing a function and in [5] for
computing functions of multiple source realizations, where it has been shown that comput-
ing multiple instances of a function simultaneously could be better than computing each
instance separately, and a lower bound on the amount of communication required for com-
puting multiple instances has been established in terms of the communication needed for

This research is sponsored by the U.S. Army Research Laboratory under the Network Science Collabo-
rative Technology Alliance, Agreement Number W911NF-09-2-0053.

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.109

379

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.109

379

computing a single instance. Computing a function of two correlated sources at one or both
parties is investigated in [6] and [7], respectively, for the case of vanishing error probabil-
ity. Reference [8] has studied the impact of mismatched decoding on the source coding
performance in the presence of decoder side information. Compressing a source when two
parties have asymmetric information about its distribution is considered in [9] and [10] for
one-way (non-interactive) communication.

Zero-error communication protocols often utilize the notion of characteristic graphs to
construct a graphical representation of the confusable or ambiguous source instances. As
such, characteristic graphs has been leveraged in [11] for compressing a source with zero-
error in the presence of decoder side information. They have since found applications in
one-way set reconciliation [12], in zero-error compression with compound decoder side
information [13], and in function compression with zero [6] and non-zero distortion [14].

We study the worst-case zero-error interactive function computation when the two ter-
minals have mismatched information about the true distribution of the sources. We aim at
identifying the impact of this mismatch on the worst-case message length. To do so, we
investigate the conditions under which reconciliation, i.e., reconciling the true distribution
between the two users first and then using it for communication, is better or worse than no
reconciliation, i.e., not reconciling the true distribution but instead using a zero-error encod-
ing protocol with increased codeword length. We next construct a communication protocol
to create partial levels of agreement about the true distribution and utilize it to identify a
reconciliation-communication tradeoff. This tradeoff results from the interplay between
the cost of reconciliation and the resulting improvement on the compression performance.
We demonstrate that, reconciling the information mismatch may improve the compression
performance, but may also fail to do so. In fact, we show that partial reconciliation can
strictly outperform both perfect reconciliation or no reconciliation.

In the remainder of the paper, X denotes a set with cardinality |X | and supp(p) =
{x ∈ X : p(x) > 0} is the support set of a probability distribution p(x) over X . We let
xn = (x1, . . . , xn) and {0, 1}∗ = ∪∞n=1{0, 1}n. The chromatic number of graph G is χ(G).

2 System Model and Preliminaries

We consider two discrete correlated sources (X, Y) over a finite set X × Y . User 1
observes X , whereas user 2 observes Y . The two sources are generated by a probabil-
ity distribution p(x, y) from a finite set of distributions P . User 1 observes a sequence
xn ∈ X n, whereas user 2 observes a sequence yn ∈ Yn, with probability p(xn, yn) =∏n

i=1 p(xi, yi). Both users know the set P , however, only user 1 knows the nature’s se-
lection for p(x, y) ∈ P . User 2 instead assumes a probability distribution q(x, y) from a
finite set of distributions Q such that supp(q) ⊆ supp(p). In essence, this provides some
side information to user 2 about the possible candidates for p(x, y), which is a subset of P .
Again, both users know Q, however, only user 2 knows the actual q(x, y).

The two parties want to compute a function f : X × Y → F where F is a finite set.
To do so, user 1 recovers some ŷn ∈ Yn and user 2 recovers some x̂n ∈ X n such that the
function values for the recovered sequences are the same as the original source sequence,
leading to the following zero-error condition,

Pr
[
fn(Xn, Ŷ n) 6= fn(Xn, Y n)

⋃
fn(X̂n, Y n) 6= fn(Xn, Y n)

]
= 0, (1)

380380

where fn(xn, yn) := (f(x1, y1), . . . , f(xn, yn)). In essence, (1) states that

f(xi, ŷi) = f(x̂i, yi) = f(xi, yi) for all p(xi, yi) > 0 for i = 1, . . . , n. (2)

Lastly, we let Sn := supp(p(xn, yn)).
We consider interactive encoding strategies in which users take turns to send binary

sequences that we refer to as messages. We assume that the communication takes place in
r-rounds where r is finite. The encoding function is defined as φ : X n ×Yn → {0, 1}∗ for
which the codeword φ(xn, yn) = [φi(x

n, yn)]ri=1 is the sequence of messages exchanged for
(xn, yn) ∈ Sn, where φi(xn, yn) is the message transmitted by the two parties at round i and
φi(xn, yn) = [φk(x

n, yn)]ik=1 is the sequence of messages exchanged in the first i rounds
for i ∈ {1, . . . , r}. The encoding at a given user is based on the user’s own symbols as well
as the previous messages

φi(x
n, yn) = [φXi (x

n, φi−1(xn, yn)), φYi (y
n, φi−1(xn, yn))], (3)

where φXi (x
n, φi−1(xn, yn)) ∈ {0, 1}∗ and φYi (y

n, φi−1(xn, yn)) ∈ {0, 1}∗ are the mes-
sages sent at round i from user 1 and user 2, respectively. To ensure that users know when
a received message ends, we have the following condition. For all (xn, yn), (xn, ŷn) ∈ Sn
and f(xn, yn) 6= f(xn, ŷn), if [φk(xn, yn)]i−1k=1 = [φk(x

n, ŷn)]i−1k=1 for some i ∈ {2, · · · , r}
then φYi (x

n, φi−1(xn, yn)) is not a proper prefix of φYi (x
n, φi−1(xn, ŷn)). Same applies

when we interchange X and Y , i.e., for user 2. The encoding function is a deterministic
mapping known by both parties in advance. The worst-case codeword length for φ is

ln,φ = max
(xn,yn)∈Sn

1

n
|φ(xn, yn)| bits/symbol (4)

where | · | is the length, i.e., number of bits, in a binary sequence. We define the minimum
worst-case codeword length as

ln = min
φ

ln,φ. (5)

We observe from (1) that the minimum worst-case codeword length is equal for all
p, p′ ∈ P with supp(p) = supp(p′). We leverage this property for constructing our
communication protocols as follows. For each p(x, y) ∈ P , we define a bipartite graph
Gp = (X ,Y , Ep) with vertex sets X , Y , and an edge set Ep. An edge (x, y) ∈ Ep exists if
and only if p(x, y) > 0.

We note that Gp = Gp′ for any p(x, y), p′(x, y) ∈ P with supp(p) = supp(p′). Ac-
cordingly, P can be partitioned into groups of distributions that have the same support set,
such that the set of graphs in each partition corresponds to a distinct bipartite graph. We
represent this set of distinct bipartite graphs by G, and each G ∈ G as G = (X ,Y , EG).
Definition 1. (Ambiguity sets) Given G ∈ G, define for each xn ∈ X n a set

IX,G(xn) = {fn(xn, yn) ∈ Fn : (xi, yi) ∈ EG, yi ∈ Y , i = 1, . . . , n}, (6)
for which each element denotes a sequence of function values, and λG(xn) := |IX,G(xn)|
is the number of distinct sequences of function values. Similarly, define for each yn ∈ Yn

IY,G(yn) = {fn(xn, yn) ∈ Fn : (xi, yi) ∈ EG, xi ∈ X , i = 1, . . . , n}, (7)

with µG(yn) := |IY,G(yn)|. We let λG := max
x∈X

λG(x), and µG := max
y∈Y

µG(y). Lastly, for

each G ∈ G, we construct a set

SnG = {(xn, yn) ∈ X n × Yn : (xi, yi) ∈ EG, i = 1, . . . , n}. (8)

381381

2.1 Function Computation When Both Users Observe the True Distribution

The following known results for the case p(x, y) = q(x, y) are key to our analysis.
Proposition 1. [2] Given a bipartite graph G constructed from p(x, y) and f(x, y), zero-
error decoding requires that: i) the set of codewords for the sequences in IX,G(xn) for each
xn ∈ X is prefix-free, ii) the set of codewords in IY,G(yn) for each yn ∈ Y is prefix-free.

The following result provides a lower bound on the worst-case codeword length.

Theorem 1. [15] Let xmax ∈ X be a symbol with λG(xmax) = λG and ymax ∈ Y with
µG(ymax) = µG. Denote xnmax := (xmax, . . . , xmax) and ynmax := (ymax, . . . , ymax). Then,

ln ≥ max
(xnmax,y

n)∈Sn
(xn,ynmax)∈Sn

{
log λG +

1

n
log µ(yn),

1

n
log λ(xn) + log µG

}
. (9)

Definition 2. (Characteristic graphs) Define a graph GX = (X , EX) for user 1 with a
vertex set X . An edge (x, x̂) ∈ EX exists between x ∈ X and x̂ ∈ X whenever some
y ∈ Y exists such that (x, y) ∈ S(1), (x̂, y) ∈ S(1) and f(x, y) 6= f(x̂, y). Similarly,
define a characteristic graph GY = (Y , EY) for user 2 whose vertices are y ∈ Y . An edge
(y, ŷ) ∈ EY exists between y ∈ Y and ŷ ∈ Y whenever some x ∈ X exists such that
(x, y) ∈ S(1), (x, ŷ) ∈ S(1), and f(x, y) 6= f(x, ŷ).

The following result provides an upper bound on the worst-case codeword length.

Theorem 2. [16] For the worst-case codeword length with one round of interaction,

ln ≤
1

n
{dn log(χ(GX))e+ dn log(χ(GY))e} . (10)

Although this work focuses on protocols with at most two rounds, our analysis in the
sequel can be extended to achievable schemes with a larger number of rounds.

In the context of deterministic and non-deterministic communication complexity, there
exist various lower bounds for function computation based on matrix partitions and matrix
coverings [17]. Our choice of (9) is motivated by its immediate connection to the graphical
structure of the corresponding bipartite graph, which we frequently utilize in our analysis
in the sequel.

2.2 Different Approaches to Function Computation with Asymmetric Priors

For zero-error function computation with mismatched information, i.e., when p(x, y) 6=
q(x, y), the communication scheme must prevent any inference errors that may occur due
to the mismatch. One solution is for user 2 to learn the true distribution from user 1, after
which both users can use it for communication. We refer to this strategy as perfect reconcil-
iation. Perfect reconciliation allows user 2 to distinguish the true distribution uniquely and
the transmission of this information may require additional resources. After reconciliation,
however, both users will know the true distribution, which has the potential of reducing the
worst-case codeword length. Alternatively, users 1 and 2 may choose not to reconcile the
distributions, but to utilize a worst-case graph that is agreed upon before communication
starts. This graph should always enable zero-error communication for both users. We refer
to this scheme as no reconciliation. No reconciliation requires no additional bits for learn-
ing the graph as users utilize a predetermined graph, but the minimum codeword length for

382382

this graph can be higher than any of the individual graphs in G. Our focus is on identifying
this reconciliation-communication trade-off, by investigating the conditions under which
reconciliation is strictly better than no reconcilation.

Perfect reconciliation and no reconciliation are two extreme cases for tackling the mis-
matched distribution information. As such, we propose a third scheme called partial rec-
onciliation, which allows user 2 to distinguish user 1’s graph up to a class of graphs, after
which the two users use a worst-case graph that allows for zero-error communication for
any confusable graph within that class. Accordingly, partial reconciliation allows some
ambiguity in the reconciled set of graphs. By doing so, our goal is to identify the impact
of level of reconciliation on the worst-case codeword length. We note that perfect recon-
ciliation and no reconciliation schemes are both special cases of the partial reconciliation
scheme. The per-symbol worst-case codeword length for a finite block of n source sym-
bols is denoted as ln,R, ln,NR, and ln,PR for the perfect reconciliation, no reconciliation, and
partial reconciliation schemes, respectively. In the remainder of our analysis, we partition
Q into groups of distributions with distinct support sets, and denote byH the set of distinct
bipartite graphs corresponding to each support set as done for P .

Definition 3. (Reconciliation graph) Consider a characteristic graph R = (G, ER), such
that each vertex represents a graph G ∈ G. Define an edge (G,G′) ∈ ER between vertices
G and G′ if and only if there exists an H ∈ H such that EH ⊆ EG and EH ⊆ EG′ .

Then, dlogχ(R)e is the minimum number of bits required for user 2 to perfectly learn
G. We state in the sequel that perfect reconciliation incurs a negligible cost for large block-
lengths, which no longer holds for finite blocklengths.

Proposition 2. Perfect reconciliation is asymptotically optimal.

Proof. Since p(x, y) and q(x, y) are fixed once selected, reconciliation requires at most
dlog |R|e bits for any G. As as result, its contribution on the codeword length per symbol is
1
n
dlog |R|e, which vanishes as n→∞. Since the communication cost for no reconciliation

can never be lower than reconciliation, we observe that reconciling the graphs first, and
then using the reconciled graphs for communication, is always better than not reconciling
them, i.e.,

lim
n→∞

ln,R ≤ lim
n→∞

ln,NR. (11)

We now study the impact of reconciling the information mismatch on interactive func-
tion computation with finite blocklength.

3 Cases in which no reconciliation is better

Let GX,G = (X , EX) be a characteristic graph with a vertex set X , for which an edge
(x, x̂) ∈ EX exists whenever some y ∈ Y exists such that (x, y) ∈ ∪G∈GEG, (x̂, y) ∈
∪G∈GEG and f(x, y) 6= f(x̂, y). On the other hand, let GY,G = (Y , EY) be a characteristic
graph with a vertex set Y , for which (y, ŷ) ∈ EY whenever some x ∈ X exists such that
(x, y) ∈ EG, (x, ŷ) ∈ EG for some G ∈ G and f(x, y) 6= f(x, ŷ). We note the difference
between the conditions for constructing GX,G and GY,G: the former is based on a union of

383383

graphs ∪G ∈ G whereas the latter is based on the existence in some graph G ∈ G. This
difference results from the fact that user 2 does not know the true distribution, hence needs
to distinguish the possible symbols from a group of graphs, whereas user 1 has the true
distribution, and can utilize it for eliminating the ambiguities for correct recovery.

Theorem 3. No reconciliation is always better than perfect reconciliation whenever

dlogχ(R)e+max
G∈G

max
(xnmax,y

n)∈SnG
(xn,ynmax)∈SnG

{n log λG + log µG(y
n), log λG(x

n) + n log µG}

> dn logχ(GX,G)e+ dn logχ(GY,G)e, (12)

where xmax is a symbol with |IX,G(xmax)| = λG and ymax is a symbol with |IY,G(ymax)| =
µG that can be obtained from (6) and (7), respectively, and we use the shorthands xnmax =
(xmax, . . . , xmax) and ynmax = (ymax, . . . , ymax).

Proof. We first obtain a lower bound for perfect reconciliation,

ln,R ≥
dlogχ(R)e

n
+

1

n
max
G∈G

max
(xnmax,y

n)∈SnG
(xn,ynmax)∈SnG

{n log λG + log µG(y
n), log λG(x

n) + n log µG} .

(13)
This follows from the fact that at least dlogχ(R)e bits are required for reconciling any graph
in G, and then applying Theorem 1 to the reconciled graphG ∈ G. For the no reconciliation
case, observe that using a union graph ∪G∈G G as the worst-case graph always enables zero-
error communication for user 2. User 1 knows the true distribution and can distinguish any
function value as long as no two y, y′ ∈ Y are assigned to the same codeword such that
there exists a x ∈ X for which both (x, y) and (x, y′) are edges in the bipartite graph known
by user 1 with f(x, y) 6= f(x, y′). Then, from (10) we obtain the upper bound

ln,NR ≤
1

n
(dn log(χ(GX,G))e+ dn log(χ(GY,G))e) . (14)

where user 1 sends dn log(χ(GX,G))e bits to user 2 whereas user 2 sends dn log(χ(GY,G))e
bits to user 1.

We note that whenever there exists a “parent” graph that subsumes any other graph in
G, reconciliation is strictly suboptimal. To this end, consider a class of graphs for which
there exists some G∗ ∈ G such that EG ⊆ EG∗ for all G ∈ G. Then, reconciliation is
always worse than no reconciliation. This immediately follows from: i) any zero-error
communication strategy for G∗ is a valid no reconciliation scheme, since ∪G∈GG = G∗,
ii) any perfect reconciliation scheme should use a valid zero-error communication strategy
for G∗, as it may appear at user 1. Therefore, reconciling graphs could only increase the
codeword length, and is useless. An example to this case is when G∗ is a complete graph.

4 Cases in which partial reconciliation is (strictly) better

We now investigate the conditions under which partially reconciling the graph informa-
tion is better than perfect reconciliation. To do so, we compare the performance of a given
partial reconciliation scheme with the perfect reconciliation scheme. Let V define the set
of all possible partitions of G, and V ∈ V be a partition of G such that ∪Vi∈V Vi = G and

384384

Vi ∩ Vj = ∅ for any Vi, Vj ∈ V such that i 6= j. Let GX,Vi be a characteristic graph defined
in the same way as GX,G but by using ∪G∈Vi G instead of ∪G∈G G. Moreover, let GY,Vi be
a characteristic graph with a vertex set Y , for which (y, ŷ) ∈ EY whenever some x ∈ X
exists such that (x, y) ∈ EG, (x, ŷ) ∈ EG for some G ∈ Vi with f(x, y) 6= f(x, ŷ). We
note the procedure for constructing GY,Vi is along the lines of the procedure for GY,G , but
by using the group of graphs G ∈ Vi instead of the set of all possible graphs G ∈ G.

Theorem 4. The partial reconciliation strategy V ∈ V is always better than perfect recon-
ciliation whenever

dlogχ(R)e+max
G∈G

max
(xnmax,y

n)∈SnG
(xn,ynmax)∈SnG

{n log λG + log µG(y
n), log λG(x

n) + n log µG}

> dlog |V |e+ max
i:Vi∈V

{dn log(χ(GX,Vi))e+ dn log(χ(GY,Vi))e} . (15)

Proof. The right-hand side of (15) holds since dlog |V |e bits are sufficient for sending each
group index, and for any Vi ∈ V , zero-error recovery can be satisfied by using the graphs in
Vi, instead of G in (14), by using no more than dn log(χ(GX,Vi))e+ dn log(χ(GY,Vi))e bits.
As a result, the right-hand side of (15) is an upper bound on the zero-error codeword length
when the graphs are partially reconciled between the two users, whereas the left-hand side
lower bounds the zero-error codeword length for perfect reconciliation as in (13), from
which (15) follows.

5 Numerical examples via z-graphs

In this section, we investigate a special class of graphs for which upper and lower
bounds on the zero-error codeword length are tight. We then leverage this property to
determine the optimal two-stage reconciliation and communication strategies for n = 1.

Consider a class of graphs G for which there exists a single (x, y) ∈ X × Y such that
(x, y) ∈ EG for all G ∈ G. Additionally, assume that for any (x̂, ŷ) ∈ X × Y such that
(x̂, ŷ) ∈ EG for some G ∈ G, then either x = x̂ or y = ŷ. In that sense, this class of graphs
has a structure that resembles a z-shape, hence we refer to them as z-graphs.

Theorem 5. Consider a class of z-graphs for which some H ∈ H exists such that EH ⊆
EG for all G ∈ G. Then,

l1,PR = min
V ∈V

(
dlog |V |e+ max

i:Vi∈V

(
dlogχ(GY,Vi)e+ dlog µVie

))
(16)

where dlogχ(GY,Vi)e is defined in Section 4 and µVi = maxy∈Y | ∪G∈Vi IY,G(y)| with nota-
tions as in (6) and (7).

Proof. To prove achievability, note that for a given partition V , at least dlog |V |e bits are
necessary for sending the group index, which reconciles each graph up to the class of
graphs in the group it is assigned to. After reconciliation, zero-error communication re-
quires maxi:Vi∈V (dlogχ(GY,Vi)e+ dlog µVie) in the worst-case.

We show this is sufficient by first considering an encoding that ensures zero-error com-
munication for any graph in Vi by using (dlogχ(GY,Vi)e+ dlog µVie) bits. Group all the
neighbors x′ ∈ X of y in ∪G∈ViG that lead to the same function value f(x′, y). Assign

385385

x

y

...

...

...

...

x

y

...

...

...

...

x

y

...

...

...

...

x

y

...

...

...

...

G1 G2 G3 H

G1 G2

G3

R

Figure 1: Mismatched graphs G = {G1, G2, G3},H = {H}, and the reconciliation graph R.

a single distinct codeword to each of these groups. Note that this requires dlog µVie bits
in total. Next, for a given Vi, construct the graph GY,Vi as defined in Section 4. Find the
minimum coloring of GY,Vi , and assign a distinct codeword to each of the colors, which
requires dlogχ(GY,Vi)e bits in total. Finally, we show that any such partition corresponds
to a valid encoding scheme. Suppose that this is not the case, and two symbols x′, x′′ with
the same neighbor y in ∪G∈ViG such that f(x′, y) 6= f(x′′, y) are assigned to the same
codeword. User 2 then can not distinguish between these two symbols that lead to differ-
ent function values for at least some pairs of possible graphs, since user 2 does not know
the true distribution, causing an error and violating the zero-error condition. On the other
hand, assume that two symbols y′, y′′ with the same neighbor x in some G ∈ Vi for which
f(x, y′) 6= f(x, y′′) are assigned to the same codeword. Then, user 1 will not be able to
distinguish between f(x, y′) 6= f(x, y′′), i.e., the correct function values, for at least some
graphs that may occur at user 1. Therefore, by contradiction, (16) provides the optimal
strategy for communicating z-graphs.
Example 1. Consider the set of z-graphs G = {G1, G2, G3} and H = {H} in Fig. 1. The
edge sets satisfy EG3 ⊂ EG1 , EG2 ∩ EG1 = {(x, y)}, and EH = {(x, y)}. Assume that
f(x, y) is distinct for each edge (x, y) ∈ X × Y . Then,

l1,NR≥dlog µGe+max
G∈G
dlog λGe=dlog(µG1+µG2−1)e+max{dlog λG1e, dlog λG2e} (17)

which can be obtained by inspecting (16) and considering a single partition, V = {V1},
where V1 = G. For the perfect reconciliation scheme, we construct the reconciliation
graph R as given in Fig. 1, and observe that any encoding strategy that allows user 2 to
distinguish the graph of user 1 requires 3 colors (distinct codewords). After this step, both
users consider one of G1, G2, or G3. Then,

l1,R = dlog 3e+max
Gi∈G

(dlog λGi
e+ dlog µGi

e) (18)

which also follows from (16). Lastly, consider a partial reconciliation scheme achieved by
the partition V = {V1, V2} such that V1 = {G1, G3}, and V2 = {G2}. Then, from (16),

l1,PR = log 2 + max{dlog λG1e+ dlog µG1e, dlog λG2e+ dlog µG2e}. (19)
Therefore, whenever λG1 , λG2 , µG1 , µG2 satisfy

log 2 + max{dlog λG1e+dlog µG1e,dlog λG2e+dlog µG2e}
< dlog(µG1 + µG2 − 1)e+max{dlog λG1e,dlog λG2e}, (20)

partial reconciliation outperforms both perfect and no reconciliation. A possible assign-
ment is λG1 = µG2 = 8, λG2 = µG1 = 4, for which l1,PR = 6 but l1,R = 7 and l1,NR ≥ 7.

386386

X Y
1 1

2 2

3 3

4 4

5 5

0
1

1

21

1

6 6

7 7

0

X Y
1 1

2 2

3 3

4 4

5 5

0

2

6 6

7 7

0

0

0

Gp1 Gp2

X Y
1 1

2 2

3 3

4 4

5 5

0

1

2
1

6 6

7 7

0

X Y
1 1

2 2

3 3

4 4

5 5

0

2

6 6

7 7

0

X Y
1 1

2 2

3 3

4 4

5 5

0

2

6 6

7 7

0

Gp3 Gq1 Gq2

Figure 2: Bipartite graphs Gp1 for p1(x, y), Gp2 for p2(x, y), Gp3 for p3(x, y), Gq1 for q1(x, y),
and Gq2 for q2(x, y). Edge labels represent the function values from (24). As an example, for Gp1 ,
maximum vertex degree is 3 for any x ∈ X , y ∈ Y , but λGp1

= µGp1
= 2.

Example 2. Consider two users where user 1 observes x ∈ X = {1, . . . , 7} and user 2
observes y ∈ Y = {1, . . . , 7} from a distribution p(x, y) in P = {p1, p2, p3} such that

p1(x, y) =

{
1/5 if (x, y) ∈ {(3, 1), (3, 2), (3, 5), (6, 5), (7, 5)}
0 o.w. (21)

whereas

p2(x, y) =

{
1/7 if (x, y) ∈ {(3, 2), (3, 3), (3, 4), (3, 5), (4, 5), (5, 5), (6, 5)}
0 o.w. (22)

and

p3(x, y) =

{
1/5 if (x, y) ∈ {(3, 1), (3, 3), (3, 5), (4, 5), (7, 5)}
0 o.w. . (23)

Both users want to compute a function f(x, y) of (x, y) ∈ X × Y

f(x, y) =


0 if x− y > 0

1 if − 1 ≤ x− y ≤ 0

2 o.w. . (24)

User 2 assumes a distribution q(x, y) from a set Q = {q1, q2}, where

q1(x, y) =

{
1/3 if (x, y) ∈ {(3, 2), (3, 5), (6, 5)}
0 o.w. (25)

and

q2(x, y) =

{
1/3 if (x, y) ∈ {(3, 1), (3, 5), (7, 5)}
0 o.w. . (26)

Note that all of the G and H graphs are z-graphs. Using the no reconciliation scheme,
user 1 sends an index “0” if x ∈ {6, 7}, a “1” if y ∈ {4, 5}, and a “2” otherwise, by using
dlog 3e = 2 bits. After receiving the index, user 2 can recover f(x, y) perfectly, whether p
is equal to p1, p2, or p3, and then send it to user 1 by using no more than dlog 3e = 2 bits,
since there are at most 3 distinct values of f(x, y) for each y ∈ Y . Both users can then learn
f(x, y). This protocol takes 4 bits. On the other hand, from (9), we find the lower bound

387387

log 3 + log 3 = 3.17 on the message length. Hence, at least 4 bits need to be exchanged,
therefore no reconciliation is optimal.

6 Conclusion
In this paper, we considered interactive function computation when the knowledge of

the source distribution is mismatched at the two sides. We investigated the impact of recon-
ciling mismatched information on the worst-case zero-error codeword length. We identified
a reconciliation-communication tradeoff and studied the conditions under which perfectly
or partially reconciling the information mismatch is better or worse than no reconcilia-
tion. Future work includes the interactive compression of logical descriptions, analysis of
non-zero error protocols, interactive reconciliation and average message length.

References
[1] A. El Gamal and A. Orlitsky, “Interactive data compression,” in IEEE Symp. on Foundations

of Computer Science (FOCS’84), 1984, pp. 100–108.
[2] A. Orlitsky, “Worst-case interactive communication i: Two messages are almost optimal,”

IEEE Trans. on Inf. Theory, vol. 36, no. 5, pp. 1111–1126, 1990.
[3] E.-H. Yang and D.-K. He, “Interactive encoding and decoding for one way learning: Near

lossless recovery with side information at the decoder,” IEEE Trans. on Inf. Theory, vol. 56,
no. 4, pp. 1808–1824, 2010.

[4] A. C. Yao, “Some complexity questions related to distributed computing,” in ACM Symp. on
Theory of Computing (STOC’79), 1979, pp. 209–213.

[5] T. Feder, E. Kushilevitz, M. Naor, and N. Nisan, “Amortized communication complexity,”
SIAM Journal on Computing, vol. 24, no. 4, pp. 736–750, 1995.

[6] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. on Inf. Theory, vol. 47,
no. 3, pp. 903–917, 2001.

[7] N. Ma and P. Ishwar, “Some results on distributed source coding for interactive function com-
putation,” IEEE Trans. on Inf. Theory, vol. 57, no. 9, pp. 6180–6195, 2011.

[8] J. Chen, D.-K. He, and A. Jagmohan, “On the duality between Slepian–Wolf coding and
channel coding under mismatched decoding,” IEEE Trans. on Inf. Theory, vol. 55, no. 9, pp.
4006–4018, 2009.

[9] B. Juba, A. T. Kalai, S. Khanna, and M. Sudan, “Compression without a common prior: an
information-theoretic justification for ambiguity in language,” Innovations in Computer Sci-
ence (ICS), 2011.

[10] E. Haramaty and M. Sudan, “Deterministic compression with uncertain priors,” in 5th Conf.
on Innovations in Theoretical Computer Science (ITCS’14), 2014, pp. 377–386.

[11] H. S. Witsenhausen, “The zero-error side information problem and chromatic numbers,” IEEE
Trans. on Inf. Theory, vol. 22, no. 5, pp. 592–593, 1976.

[12] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly optimal communi-
cation complexity,” IEEE Trans. on Inf. Theory, vol. 49, no. 9, pp. 2213–2218, 2003.

[13] J. Nayak and K. Rose, “Graph capacities and zero-error transmission over compound chan-
nels,” IEEE Trans. on Inf. Theory, vol. 51, no. 12, pp. 4374–4378, 2005.

[14] V. Doshi, D. Shah, M. Médard, and M. Effros, “Functional compression through graph color-
ing,” IEEE Trans. on Inf. Theory, vol. 56, no. 8, pp. 3901–3917, 2010.

[15] B. Guler and A. Yener, “Compressing semantic information with varying priorities,” in IEEE
Data Compression Conf. (DCC’14), 2014, pp. 213–222.

[16] B. Guler, A. Yener, and P. Basu, “A study of semantic data compression,” in IEEE Global
Conf. on Signal and Information Processing (GlobalSIP’13), 2013, pp. 887–890.

[17] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge University Press, 2006.

388388

