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Abstract

Semantics of communicated data can lead to conclusions with varying degrees of priorities.
Depending on the interests of the communicating parties, some facts lead to conclusions that
carry a high risk when ignored, and others may not be worth the resources to share the facts
leading to those uninteresting conclusions. This paper studies the worst-case semantic data
compression problem for sharing facts that lead to conclusions with such varying priorities.
We establish the performance bounds by utilizing the partial dependencies between the ideas
and the priority distributions on the conclusions. We show that multiple term descriptions
of the facts and conclusions improve the compression performance when combined with
judicious partitioning of the fact space.

1 Introduction

Understanding the impact of the meaning of communicated messages, i.e., semantics of

data, on networked communication, has recently been re-emphasized thanks to the growing

interaction of humans with computers, as well as the proliferation of smart devices and

cyber-physical systems. As sources become aware of their environments, sharing useful
information becomes more important than sharing any information. In effect, semantic

communication needs classical information theory to be extended to quantify the impact of

the meaning of information conveyed in a physical system [1, 2].

Our aim in this paper is to develop an understanding of the worst-case data compression

performance of communicating with semantic data between two parties by utilizing multi-

ple term descriptions. As importantly, we will consider conclusions of different priorities.

To motivate the latter, consider a network in which the first person knows the facts x and

x′, and the second person knows y and y′. Assume that the following conclusions can be

derived from these facts. x ∧ y → c, x ∧ y′ → c′ and x′ ∧ y′ → c′′, whereas x′ ∧ y
does not lead to any useful conclusion. Let the normalized priorities of these conclusions

be pc = 0.55, pc′ = 0.44, pc′′ = 0.01. Then, depending on the scarcity of the resources,

sources may agree to ignore the conclusion c′′ to achieve better compression.

Semantic relations are utilized in [3] for designing semantic codewords close to the

source within a given distortion. The use of semantic ambiguity and redundancy in com-

munication between semantically-aware nodes is inspected in [4]. The relation between the

worst-case message length and the number of rounds of interaction in a semantic network

is studied in [5] for single term transmissions. This work, on the other hand, exploits the
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Figure 1: Semantic network with 2 users, 5 facts for each user, λmax = 3 and μmax = 4.

benefits of multiple-term descriptions and priority assessments to achieve better compres-

sion bounds. We look into the problem of communicating with a sequence of facts that lead

to desired conclusions. We next address the case when conclusions have different priorities

and users want to recover the facts of the other person for most conclusions except a small

low priority set, instead of merely decoding any fact. These facts might be in the form of

RDF (Resource Description Framework) triples. We consider the facts as logical variables.

These logical relations refer to the semantic aspects of information. We provide lower and

upper bounds in terms of worst-case, zero-error message length to understand the impact

of multiple term descriptions and semantic preferences on compression performance.

2 System Model

We consider a two-way communication network through which two persons share seman-

tic information. The first person (user 1) observes facts from a set X whereas the second

person (user 2) knows facts from Y . Some pairs of facts lead to conclusions that are of

importance to the users. This set of desired conclusions represent the network interests

and system requirements. We note that not all the combinations of facts lead to a de-

sired conclusion. The relations between facts and conclusions are restricted to conjunctive

expressions in propositional logic [4]. We assume each party shares a block of n facts, de-

noted by xn = (x1, x2 . . . , xn) and yn = (y1, y2 . . . , yn) for users 1 and 2, respectively. The

indices xi ∈ X and yi ∈ Y for i = 1, . . . , n refer to the ith fact chosen from the sets X and

Y . A subset of fact pairs (xi, yi) ∈ X × Y lead to useful conclusions ci ∈ C. User 1 wants

to learn yn and user 2 wants to learn xn, as long as the following condition is satisfied:

xi ∧ yi → ci, ci ∈ C, i = 1, . . . , n (1)

That is, the two parties want to learn the facts of the other as long as each fact from one

person results in a meaningful conclusion with the corresponding fact from the other user.

We assume that each fact xi from user 1 yields a desired conclusion with at most λmax facts

yi from user 2, as illustrated in Fig. 1. Similarly, each fact yi leads to a useful conclusion

with at most μmax facts xi from user 1.

We center our discussion on the source coding problem and assume that a noiseless
channel exists between the two parties. Let us define the support set of the facts that lead

to useful conclusions by:
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Sn = {(xn, yn) : xi ∧ yi → ci, x
n ∈ X n, yn ∈ Yn, ci ∈ C, i = 1, . . . , n} (2)

where Sn is a subset of X n × Yn in which every fact-tuple leads to a sequence of desired

conclusions, and C is the finite discrete set of conclusions. Define the ambiguity set IX(xn)
of sequence xn for user 1:

IX(xn) = {yn : xi ∧ yi → ci, y
n ∈ Yn, ci ∈ C, i = 1, . . . , n} (3)

which is the set of n-tuples for which each yi leads to a conclusion with the corresponding

xi. The number of sequences yn ∈ Yn from user 2 that leads to a conclusion with a given

xn is λ(xn), or |IX(xn)| = λ(xn). The ambiguity set of a given yn for user 2 is:

IY (yn) = {xn : xi ∧ yi → ci, x
n ∈ X n, ci ∈ C, i = 1, . . . , n} (4)

where yn ∈ Yn and |IY (yn)| = μ(yn).
Consider a mapping φ for encoding the fact pairs from Sn to codewords of binary bit

streams. A sequence of codewords φ(xn, yn) = [φi(x
n, yn)]ri=1 is exchanged during an

r-round communication with φi(x
n, yn) denoting the codeword from round i:

φi(x
n, yn) = [φX

i (x
n, yn), φY

i (x
n, yn)] (5)

where φX
i (x

n, yn) and φY
i (x

n, yn) are the codewords transmitted from users 1 and 2 in

round i, respectively. The sequences φX(xn, yn) = [φX
i (x

n, yn)]ri=1 and φY (xn, yn) =
[φY

i (x
n, yn)]ri=1 denote the codewords transmitted in r rounds. Sources can transmit arbi-

trary length codewords simultaneously. Null transmissions are allowed at any round. We

define the worst-case codeword length for mapping φ given a sequence of n facts as:

lφ = max
(xn,yn)∈Sn

1

n
|φ(xn, yn)|, bits/fact (6)

The best encoding strategy in terms of the maximal length codeword is then obtained by:

l = min
φ

lφ (7)

Lemma 1. [6] Let (xn, yn), (x̄n, yn), (x̄n, ȳn) ∈ Sn be fact pairs such that xn, x̄n ∈ X n,
xn �= x̄n and yn, ȳn ∈ Yn, yn �= ȳn. If φ(xn, yn) or φ(x̄n, ȳn) is a prefix of the other, then
φ(xn, yn) = φ(x̄n, yn) = φ(x̄n, ȳn).

Proposition 1. The set of codewords in the ambiguity set IX(xn) for each xn ∈ X n is
prefix-free. Similarly for each yn ∈ Yn, codewords in IY (yn) are prefix-free.

This proposition follows from Lemma 1 and the property that codewords correspond-

ing to the facts in the ambiguity set have to be prefix-free for the receiver to interpret

them correctly. That is, when (xn, yn) ∈ Sn and (xn, ȳn) ∈ Sn, then [φX
i (x

n, yn)]
k−1
i=1 =

[φX
i (x

n, ȳn)]
k−1
i=1 implies that neither φY

i (x
n, yn) nor φY

i (x
n, ȳn) is a prefix of the other in

order for the first person to correctly distinguish between yn and ȳn. Similarly, when

(xn, yn) ∈ Sn and (x̄n, yn) ∈ Sn, then if [φY
i (x

n, yn)]
k−1
i=1 = [φY

i (x̄
n, yn)]

k−1
i=1 , then nei-

ther φX
i (x

n, yn) nor φX
i (x̄

n, yn) is a prefix of the other for the second person to distinguish

between xn and x̄n.
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3 Lower Bound on Message Length for Multiple Facts

In this section, we present the lower bound on the worst-case message length.

Theorem 1. The worst-case codeword length for the mapping φ is given as follows:

l ≥ max
(x̄n,yn)∈Sn

(xn,ȳn)∈Sn

{
log λmax +

1

n
log μ(yn),

1

n
log λ(xn) + log μmax

}
bits/fact (8)

Proof. Form a bipartite graph G = (V, U,E) with vertices in V and U being the n-tuples

xn ∈ X n and yn ∈ Yn, respectively. Define an edge (xn, yn) between xn and yn if:

xi ∧ yi → ci, ci ∈ C, ∀i ∈ {1, . . . , n}. (9)

It follows from (9) that the maximum degree for each vertex xn (yn) is at most λn
max (μn

max).

From Proposition 1, for any given φ, we have for all (xn, yn) ∈ Sn that |φX(xn, yn)| ≥
�log λ(xn)	 and |φY (xn, yn)| ≥ �log μ(yn)	. Hence, for any given φ, for all (xn, yn) ∈ Sn:

|φX(xn, yn)|+ |φY (xn, yn)| ≥ �log λ(xn)	+ �log μ(yn)	 (10)

We can choose a φ that minimizes (10). The worst-case codeword length is then given by:

l = min
φ

max
(xn,yn)∈Sn

1

n
|φ(xn, yn)| (11)

≥ max
(xn,yn)∈Sn

min
φ

1

n
|φ(xn, yn)| (12)

= max
(xn,yn)∈Sn

min
φ

1

n

(|φX(xn, yn)|+ |φY (xn, yn)|) (13)

≥ max
(xn,yn)∈Sn

1

n

(�log λ(xn)	+ �log μ(yn)	) (14)

≥ max
(x̄n,yn)∈Sn

(xn,ȳn)∈Sn

1

n

{
�log λn

max	+ �log μ(yn)	, �log λ(xn)	+ �log μn
max	

}
(15)

≥ max
(x̄n,yn)∈Sn

(xn,ȳn)∈Sn

{
log λmax +

1

n
log μ(yn),

1

n
log λ(xn) + log μmax

}
(16)

where x̄n denotes a vertex with degree λn
max and ȳn is a vertex with degree μn

max. We define

μ(yn) and λ(xn) as the degrees of yn or xn that are adjacent to x̄n and ȳn, respectively. Then

(12) follows from the min-max inequality, (13) from the definition of |φ(xn, yn)|, and (14)

is from (10).

4 Upper Bound on Message Length for Multiple Facts with Semantic Relations

In this section, we provide an upper bound on the worst case message length. To do so, we

first briefly review some notable results on hypergraph partitioning and product graphs as

applied to our problem.

Lemma 2. [7] Assume that for all xn ∈ X n, |IX(xn)| ≤ α and for all yn ∈ Yn,
|IY (yn)| ≤ β. The worst-case message length is then bounded by:

l ≤ �log(α · β)	+ �logmin(α, β)	 (17)
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Lemma 3. [8] Define Γ = (V,E) to be a hypergraph with a vertex set of size |V |, and
the hyperedges Em ⊆ V with m = 1, . . . , |E|. Assume that each hyperedge has at most
κ elements, i.e., |Ei| ≤ κ. Then for a given ε > 0, there exists a constant c(ε) such that
∀s ≥ (ln

√|V ||E|)1+ε and s > 1, a partition V1, V2, . . . V⌈κ
s
c(ε)

⌉ of the vertex set V can be

found with |Vk ∩ Em| < s for m = 1, . . . , |E| and k = 1, . . . ,
⌈
κ
s
c(ε)

⌉
.

Definition 1. (Strong Product) [9] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.
The strong product G1 � G2 of G1 and G2 is represented by the graph Γ = (V,E). Its
vertex set is given by V = V1 × V2. Let v = (x, y) and v′ = (x′, y′) be two distinct vertices
v, v′ ∈ V. An edge (v, v′) exists between v and v′ if and only if (x, x′) ∈ E1 and y = y′, or
x = x′ and (y, y′) ∈ E2, or (x, x′) ∈ E1 and (y, y′) ∈ E2.

The strong product of graphs represents a system in which users are interested in shar-

ing any block of facts so long as each fact in the block leads to a conclusion with the

corresponding fact from the other user. Let the chromatic numbers of G1 and G2 be χ(G1)
and χ(G2), respectively. Then, the chromatic number χ(Γ) of Γ = G1 � G2, satisfies the

following inequality [9]:

max(χ(G1), χ(G2)) ≤ χ(Γ) ≤ χ(G1) · χ(G2) (18)

We now present our main result of this section.

Theorem 2. The upper bound on the maximum code length for the two-way semantic net-
work when each user shares a block of n facts, with the condition that the facts are to be
recovered only if each of the n pairs leads to a conclusion is:

l ≤ �log λmax	+ �log μmax	
+
(1 + ε)

n
log log

√
χ(GX)χ(GY ) + (1 + ε)

log n

n
+
2

n
log c(ε) +

5

n
bits/fact (19)

Proof. Define a characteristic graph GX = (VX , EX) for user 1 with vertices VX = {xi :
xi ∧ yi → ci, xi ∈ X , yi ∈ Y , ci ∈ C} and an edge (xi, x̄i) if there exists a fact yi such

that xi ∧ yi → ci, x̄i ∧ yi → c̄i and ci �= c̄i. The chromatic number of GX is χ(GX).
Similarly graph GY = (VY , EY ) for user 2 has vertex set VY = {yi : xi ∧ yi → ci, xi ∈
X , yi ∈ Y , ci ∈ C} and an edge (yi, ȳi) if there exists xi such that xi∧yi → ci, xi∧ ȳi →
c̄i and ci �= c̄i. An edge refers to two nodes that produce different conclusions when

paired with some identical fact from the other user, and therefore need to be distinguished.

The independent sets of the characteristic graph, on the other hand, represent the facts

that produce the same conclusions with any fact from the other user. We assume that the

two users want to avoid using extra resources for sharing the facts that lead to the same

conclusions. Next, we define the following mapping:

g(xi ∧ yi) =

{
1 if xi ∧ yi → ci, xi ∈ X , yi ∈ Y , ci ∈ C
0 o.w.

(20)

for i = 1, . . . , n. Users 1 and 2 want to learn yn and xn, respectively, if the following

condition is satisfied:

g(x1 ∧ y1) ∧ g(x2 ∧ y2) . . . ∧ g(xn ∧ yn) = 1 (21)
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Consider a bipartite graph G = (V, U,E) as in Section 3 with vertices xn ∈ X n and

yn ∈ Yn, and an edge (xn, yn) if (21) is satisfied. We know that the maximum degree of

each xn and yn is no greater than λn
max and μn

max, respectively. Next, we define the n-fold

characteristic graphs Gn
X and Gn

Y for the first and the second users. The vertices for Gn
X are

the n-tuples xn ∈ X n, and edge (xn, x̄n) exists whenever xi ∧ yi → ci, x̄i ∧ yi → c̄i, and

ci �= c̄i for i = 1, . . . , n for some yn ∈ Yn. For the second person, define Gn
Y with vertices

yn ∈ Yn. The edge (yn, ȳn) exists if and only if xi ∧ yi → ci, xi ∧ ȳi → c̄i, and ci �= c̄i
for i = 1, . . . , n for some xn ∈ X n. We see from condition (21) and Definition 1 that Gn

X

can be defined as the n-fold strong product of GX , whereas Gn
Y can be defined as the n-fold

strong product of GY .

Define a minimum coloring of the characteristic graph Gn
X by the set of colors qX ∈

{1, . . . , χ(Gn
X)}. Similarly, for Gn

Y define a coloring by qY ∈ {1, . . . , χ(Gn
Y )}. Let q(xn)

and q(yn) denote the colors assigned to xn and yn. Let the ambiguity set for color qX be:

JX(qX)={qY :xi∧yi→ci, q(x
n)=qX, q(y

n)=qY ∈{1,. . . ,χ(Gn
Y )}, xn∈X n, yn∈Yn, cn∈Cn}

(22)

Similarly, denote the ambiguity set JX(qY ) for each color qY as:

JY(qY )={qX :xi∧yi→ci, q(x
n)=qX∈{1,. . . ,χ(Gn

X)}, q(yn)=qY, x
n∈X n, yn∈Yn, cn∈Cn}

(23)

By definition of the strong product and the construction of the characteristic graph, the

cardinality of the ambiguity sets is bounded by |JX(qX)| ≤ λn
max, and |JY (qY )| ≤ μn

max.

Another way to see this is the fact that the number of elements in each ambiguity set cannot

be greater than the maximum degree of each vertex of the bipartite graph G = (V, U,E).
The theorem follows from Lemmas 2 and 3 by utilizing hypergraph partitioning [8].

Let s = (ln
√
χ(Gn

X)χ(Gn
Y ))

1+ε. Partition the color set of each n-product graph Gn
X and Gn

Y

by using Lemma 3 with the condition that in each partition, the number of colors from the

ambiguity set is no greater than s. User 1 then sends the index of the partition the color of

her fact lies in. This requires at most �log(μn
max

s
c(ε))	 bits. User 2 also sends the index of

the partition that the color of his fact is in by using no more than �log(λn
max

s
c(ε))	 bits. User

1 then uses the received index and her color to restrict the possible colors from user 2 in

a s-dimensional subspace. Through a similar elimination, user 2 leaves at most s possible

colors from user 1. This limits the communication to an at most s×s dimensional subspace.

Then, from Lemma 2 with α = β = s, no more than 3�log(s)	 bits are necessary for both

parties to learn both sequences. The maximum number of bits required is then bounded by:

l ≤ 1

n

(�log (μn
max

s
c(ε))	+ �log (λ

n
max

s
c(ε))	+ 3�log(s)	) (24)

≤ 1

n

(
(log (

μn
max

s
c(ε)) + 1) + (log (

λn
max

s
c(ε)) + 1) + 3(log(s) + 1)

)
(25)

≤ 1

n

(
log λn

max + log μn
max + (1 + ε) log ln

√
χ(Gn

X)χ(Gn
Y ) + 2 log c(ε) + 5

)
(26)

≤ �log λmax	+ �log μmax	+ 1

n
(1 + ε) log log

√
χ(Gn

X)χ(Gn
Y ) +

2

n
log c(ε) +

5

n
(27)

Applying (18) recursively on the partitions Gi
X = GX � Gi−1

X for i = 1, . . . , n bounds

the chromatic number of Gn
X by χ(Gn

X) ≤ χ(GX)n. Similarly, we have χ(Gn
Y ) ≤ χ(GY )n.
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Thus, the worst-case message length is bounded above as:

l ≤ �log λmax	+ �log μmax	+ 1

n
(1 + ε) log log

√
χ(GX)nχ(GY )n+ 2

n
log c(ε) +

5

n
(28)

from which the theorem follows. We assume that the partitioning protocol is agreed upon

by the two parties before the communication takes place.

Corollary 1. For large block lengths, there exists graphs for which the upper and lower
bounds are tight.

l→ �log λmax	+ �log μmax	 (29)

Proof. From Theorem 2, the upper bound for large sequences satisfies:

lim
n→∞

l ≤ lim
n→∞

(
�log λmax	+ �log μmax	+ (1 + ε)

n
log log

√
χ(GX)χ(GY ) + (1 + ε)

log n

n

+
2

n
log c(ε) +

5

n

)
= �log λmax	+ �log μmax	

Consider a graph with a color pair (qX , qY ) such that qX ∈ JY (qY ), qY ∈ JX(qX), and

that |JY (qY )| = μn
max and |JX(qY )| = λn

max. Applying Theorem 1 gives the lower bound

l ≥ �log λmax	+ �log μmax	, hence the lower and upper bounds are tight.

5 Conclusions with Varying Priorities and the Role of Ignorance

We centered our discussion so far on the assumption that all conclusions are equally impor-

tant, which is rarely the case in real life applications. In a semantic network, a more sensi-

ble approach is to assume that some conclusions have higher priorities than the others, and

some are less critical. Consider the conclusions c ↔ Fire! and c′ ↔ Alice has a blue car.
Although the exact priorities are system-dependent, in most situations the first conclusion

carries a higher risk when ignored, hence its priority is higher than the latter. We here study

the performance limits of the message length for lossless recovery of conclusions with un-
equal priorities. Define p(c) to be the weight representing the degree of priority given to

conclusion c, or the probability of the risk associated with ignoring c. Equally, 1−p(c) can

be interpreted as the tendency of ignoring c. The priority weights are normalized to yield

a valid probability distribution which satisfy
∑

c∈C p(c) = 1 and p(c) ≥ 0 for all c ∈ C.

Then we can represent the conclusions by a random variable C ∼ p(c). The conclusions

are assumed to be independent from each other, and the weight of a sequence c1, . . . , cn is:

p(c1, . . . , cn) = p(cn) =
n∏

i=1

p(ci), ci ∈ C (30)

User 1 produces a sequence x1, . . . , xn whereas user 2 has y1, . . . , yn, such that xi ∧ yi →
ci, ci ∈ C in which c1, . . . , cn represent the conclusions to be recovered by both users.

Users are interested in sharing sequences for which each pair results in a useful conclusion.

We assume in this section that fact pairs lead to distinct conclusions, so that no duplicates

occur. We derive the upper and lower bounds in order for each user to recover the facts

resulting to all but a small priority fraction of the conclusions.
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Theorem 3. The worst-case codeword length for the semantic network when conclusions
have unequal priorities is:

l ≤ H(C|q̄Y ) +H(C|q̄X) + (1 + ε)

n
log (H(C) + ε) +

(1 + ε)

n
log n+

σ

n
(31)

where q̄T = argmax
qT

H(C|qT ), H(C|qT ) denotes the entropy of C given coloring qT , and

σ = 5 + 2 log c(ε) + ε′ + ε′′.

Proof. For any ε > 0, we refer to the sequence cn as ε-typical if:

∣∣∣∣− 1

n
log p(c1, . . . , cn)−H(C)

∣∣∣∣ < ε (32)

where H(C) is the entropy of C. Let An
ε be the set of typical sequences:

An
ε (C) =

{
cn :

∣∣∣∣− 1

n
log p(cn)−H(C)

∣∣∣∣ < ε

}
(33)

We introduce two ε-characteristic graphs, Gn
X,ε and Gn

Y,ε. For user 1, let Gn
X,ε = (VX , EX)

be a graph with the vertex set VX = X n. An edge (xn, x̄n) exists if and only if xi ∧ yi → ci
and x̄i ∧ yi → c̄i, where ci �= c̄i for i = 1, . . . , n for some yn ∈ Yn and cn, c̄n ∈ An

ε (C).
Similarly, for user 2, Gn

Y,ε = (VY , EY ) has vertices VY = Yn. The edge (yn, ȳn) exists if

and only if xi ∧ yi → ci, xi ∧ ȳi → c̄i, and ci �= c̄i for i = 1, . . . , n for some xn ∈ X n and

cn, c̄n ∈ An
ε (C). The chromatic numbers of the characteristic graphs give the minimum

number of colors required to represent the facts that lead to the conclusions in the typical

set. The colors of user 1 are given by qX ∈ {1, . . . , χ(Gn
X,ε)} and for user 2 by qY ∈

{1, . . . , χ(Gn
Y,ε)}. Define An

ε′(C|qX) to be the typical set of cn sequences for a particular

color qX from user 1:

An
ε′(C|qX) =

{
cn :

∣∣∣∣− 1

n
log p(cn|qX)−H(C|qX)

∣∣∣∣ < ε′
}

(34)

Let An
ε′′(C|qY ) be the typical set of cn sequences for a particular qY from user 2:

An
ε′′(C|qY ) =

{
cn :

∣∣∣∣− 1

n
log p(cn|qY )−H(C|qY )

∣∣∣∣ < ε′′
}

(35)

We choose n sufficiently large such that the total probability of the conclusions in the typ-

ical sets satisfy P (An
ε (C)) > 1 − ε, P (An

ε′(C|qX)) > 1 − ε′ and P (An
ε′′(C|qY )) > 1 − ε′′

for arbitrary ε, ε′, ε′′ > 0. We know that the number of elements in the typical set satisfies

|An
ε′(C|qX)| ≥ (1 − ε′)2n(H(C|qX)−ε′) and |An

ε′′(C|qY )| ≥ (1 − ε′′)2n(H(C|qY )−ε′′). More-

over, |An
ε′(C|qX)| ≤ 2n(H(C|qX)+ε′) and |An

ε′′(C|qY )| ≤ 2n(H(C|qY )+ε′′). Lastly, |An
ε (C)| ≥

(1 − ε)2n(H(C)−ε) and |An
ε (C)| ≤ 2n(H(C)+ε). We then apply Lemma 3 on the hyper-

graph H = (V,E) where |V | = |Gn
X,ε|, |E| = |Gn

Y,ε| and κ = max
qX

2n(H(C|qX)+ε′) for

user 1. Similarly, for user 2 we define an hypergraph with |V | = |Gn
Y,ε|, |E| = |Gn

X,ε|
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and κ = max
qY

2n(H(C|qY )+ε′′). Let p = (ln
√
|Gn

X,ε||Gn
Y,ε|)1+ε. Applying the hypergraph

partitioning protocol, the message length can be bounded by:

l ≤ 1

n
logmax

qY
2n(H(C|qY )+ε′′) +

1

n
logmax

qX
2n(H(C|qX)+ε′)

+
(1 + ε)

n
log ln

√
|Gn

X,ε||Gn
Y,ε|+

2

n
log c(ε) +

5

n
(36)

≤ H(C|q̄Y ) +H(C|q̄X) + (1 + ε)

n
log ln

√
|Gn

X,ε||Gn
Y,ε|+

(ε′ + ε′′)
n

+
2

n
log c(ε) +

5

n

≤ H(C|q̄Y ) +H(C|q̄X) + (1 + ε)

n
log log 2n(H(C)+ε) +

(ε′ + ε′′)
n

+
2

n
log c(ε) +

5

n

≤ H(C|q̄Y ) +H(C|q̄X) + (1 + ε)

n
log (H(C) + ε) +

(1 + ε)

n
log n+

σ

n
(37)

when σ = 5+2 log c(ε)+ ε′+ ε′′. In other words, we partition the vertex set in such a way

that for each sequence from a given user, the number of sequences that result in a sequence

of conclusions in the typical set is bounded by the maximum number of elements in the

typical set for a given color.

Corollary 2. The upper bound on the worst-case message length for large blocks is:

l ≤ H(C|q̄Y ) +H(C|q̄X) (38)

Proof. The proof follows directly from (31) as lim
n→∞

l ≤ H(C|q̄Y ) +H(C|q̄X).
This coding scheme can achieve an arbitrarily small error probability as the block length

increases. In effect, a sequence of facts chosen by one user will not be recovered by the

other either when it corresponds to a conclusion that is not in the latter user’s typical set, or

when the sequence pairs do not lead to the ε-typical conclusions. Define the event E1 such

that qX and qY lead to a cn �∈ An
ε (C). Let E2 and E3 refer to the pair qX and qY for which

cn ∈ An
ε (C), but cn �∈ An

ε (C|qX), or cn �∈ An
ε (C|qY ), respectively. Then the probability

of error for not recovering the desired conclusions for a given pair of sequences can be

bounded by Pε = P (E1 ∪ E2 ∪ E3) ≤ P (E1) + P (E2) + P (E3) ≤ ε+ ε′ + ε′′.

Theorem 4. The lower bound on the message length with varying priorities is:

l≥ max
(q̄X ,qY )∈S
(qX ,q̄Y )∈S

{
H(C|q̄X)+ log μ(qY )

n
+
log(1−ε′)−ε′

n
,H(C|q̄Y)+ log λ(qX)

n
+
log(1−ε′′)−ε′′

n

}

(39)

where q̄X = argmax
qX

H(C|qX) and q̄Y = argmax
qY

H(C|qY ).
Proof. For each person, define μ(qY ) and λ(qX) as the number of colors from the other

person that lead to a typical conclusion sequence with qY and qX , respectively. By applying

the lower bound on the number of elements of the typical sets An
ε′(C|qX) and An

ε′′(C|qY ),
the message length can be bounded as:

l ≥ max
(q̄X ,qY )∈S, (qX ,q̄Y )∈S

1

n

{
�log (1− ε′)2n(H(C|q̄X)−ε′)	+ �log μ(qY )	,

�log λ(qX)	+ �log(1− ε′′)2n(H(C|q̄Y )−ε′′)	
}

(40)
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≥ max
(q̄X ,qY )∈S, (qX ,q̄Y )∈S

{
H(C|q̄X) + log μ(qY )

n
+
log(1− ε′)− ε′

n
,

H(C|q̄Y ) + log λ(qX)

n
+
log(1− ε′′)− ε′′

n

}
(41)

where q̄X = argmax
qX

H(C|qX) and q̄Y = argmax
qY

H(C|qY ) and S denotes the support set

of the color pairs that lead to the ε-typical conclusion sequences.

Corollary 3. For large block lengths, the message length is bounded below by:

l ≥ max
(q̄X ,qY )∈S, (qX ,q̄Y )∈S

{
H(C|q̄X) + log μ(qY )

n
, H(C|q̄Y ) + log λ(qX)

n

}
(42)

Theorem 5. There exists graphs such that the upper and lower bounds are tight, and the
message length is:

l→ H(C|q̄X) +H(C|q̄Y ) (43)

Proof. Consider a graph with (q̄X , q̄Y ) ∈ S . Then the lower bound on the message length

satisfies l ≥ H(C|q̄X)+H(C|q̄Y ) from which, with Corollary 2, the statement follows.

6 Conclusion

In this paper, we have studied a two-way interactive network through which parties share

semantic data. According to the network interests, some facts yield desired conclusions.

The two parties are interested in sharing only the sequences that lead to a high probability

set of desired conclusions. We provide the compression limits of the worst-case message

length by utilizing logical relationships between facts and conclusions with varying pri-

orities. Future directions include semantic source coding with multiple sources and more

complex logical relations.
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