
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 1513

Device-to-Device Secure Coded Caching
Ahmed A. Zewail , Member, IEEE, and Aylin Yener , Fellow, IEEE

Abstract— This paper studies device to device (D2D) coded-
caching with information theoretic security guarantees. A broad-
cast network consisting of a server, which has a library of files,
and end users equipped with cache memories, is considered.
Information theoretic security guarantees for confidentiality are
imposed upon the files. The server populates the end user caches,
after which D2D communications enable the delivery of the
requested files. Accordingly, we require that a user must not have
access to files it did not request, i.e., secure caching. First, a cen-
tralized coded caching scheme is provided by jointly optimizing
the cache placement and delivery policies. Next, a decentralized
coded caching scheme is developed that does not require the
knowledge of the number of active users during the caching
phase. Both schemes utilize non-perfect secret sharing and one-
time pad keying, to guarantee secure caching. Furthermore,
the proposed schemes provide secure delivery as a side benefit,
i.e., any external entity which overhears the transmitted signals
during the delivery phase cannot obtain any information about
the database files. The proposed schemes provide the achievable
upper bound on the minimum delivery sum rate. Lower bounds
on the required transmission sum rate are also derived using
cut-set arguments indicating the multiplicative gap between the
lower and upper bounds. Numerical results indicate that the
gap vanishes with increasing memory size. Overall, the work
demonstrates the effectiveness of D2D communications in cache-
aided systems even when confidentiality constraints are imposed
at the participating nodes and against external eavesdroppers.

Index Terms— Device-to-device communications, coded
caching, secure caching, secure delivery, secret sharing.

I. INTRODUCTION

OVER the past decade, wireless communication systems
have transformed from being limited to serving low

data rates, e.g., voice calls and text messages, to offering
dependable high data rate services, notably, for video content.
The demand in massive amounts of data will only increase
going forward, leading to potential bottlenecks. Two potential
solutions offered towards alleviating network congestion are
device-to-device (D2D) communications and caching. The
former shifts some of the traffic load from the core network
to the end users, while the later shifts it from the peak
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to off-peak hours, i.e., to when the network resources is
underutilized. More specifically, D2D communications utilize
the radio channel for end users to communicate directly
instead of routing via the network infrastructure [1]–[3], while
caching stores partial content that may be requested by users
in the network in off-peak hours so as to reduce delivery
rates to these users during peak-traffic hours [4], [5]. The
seminal reference [6] introduced coded caching and demon-
strated that, designing the downloading of partial data in
off-peak hours, and the delivery signal in peak-hours in a
manner to serve multiple users’ file demands simultaneously,
provides gains that are above and beyond simply placing
some partial content in the caches. In particular, it has been
shown that jointly designing the cache placement and delivery
phases provides a global caching gain that results from the
ability of serving multiple users by a single transmission,
in addition to the local caching gain that results from the
fact that some of the requested data is locally available in
the user’s cache. There has been significant recent inter-
est in caching systems, notably in designing coded caching
strategies demonstrating gains in various network settings
beyond the broadcast network setting of the original reference,
see for example, [7]–[15].

Caching in D2D communications have been pioneered in
reference [15]. In particular, a network where a server, with
database of N files, each with size F bits, connected to
K users, each equipped with a cache memory of size M F
bits, has been considered. In the cache placement phase,
the server populates the cache memories of the users with
partial content from the server’s database. During the delivery
phase, in contrast with the communication model in [6],
the server remains inactive and the users’ requests are to
be satisfied via D2D communications only. Both centralized
and decentralized schemes were provided. In the centralized
schemes, the cache placement and delivery phases are jointly
optimized, which requires the knowledge of the number of
active users in the system while performing cache placement.
In decentralized scheme, this knowledge is not necessary.
The fundamental limits of coded caching in device-to-device
networks have been further investigated in [16]–[20]. For
instance, references [16]–[18] have studied the impact of
coded caching on throughput scaling laws of D2D networks
under the protocol model in [21].

Beside the need of reducing the network load during the
peak hours, maintaining secure access and delivery is also
essential in several applications, e.g., subscription services.
These concerns can be addressed by the so called secure
caching and secure delivery requirements studied in server
based models. For secure delivery [14], [22]–[24], any external
entity that overhears the signals during the delivery phase must
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not obtain any information about the database files. In par-
ticular, reference [23] has studied a device-to-device caching
system with secure delivery. Utilizing one-time padding, a cen-
tralized scheme has been proposed by jointly optimizing the
cache placement and delivery phase. The order-optimality of
this scheme has been shown in [25], i.e., the multiplicative
gap between the achievable delivery load, in [23] and the
developed lower bound, in [25], can be bounded by a constant
that is independent from the system’s parameters. For secure
caching [14], [24], [26], each user should be able to recover
its requested file, but must not gain any information about the
contents of the files it did not request.

In this paper, we investigate the fundamental limits of
secure caching in device-to-device networks. That is, unlike the
settings in [14], [24], and [26], the server disengages during
the delivery phase, and users’ requests must be satisfied via
D2D communications only. By the end of the delivery phase,
each user must be able to reconstruct its requested file, while
not being able to obtain any information about the remaining
N−1 files. For this D2D model, we derive lower and upper
bounds on the rate-memory trade-off. We propose a centralized
caching scheme, where the server encodes each file using
proper non-perfect secret sharing schemes [27]–[30], and
generates a set of random keys [31]. Then, the server carefully
places these file shares and keys in the cache memories of the
users. During the delivery phase, each user maps the contents
of its cache memory into a signal transmitted to the remaining
users over a shared multicast link. Next, motivated by the
proposed schemes in [32] under no secrecy requirements,
we provide a semi-decentralized scheme, using a grouping-
based approach that guarantees secure caching, and does not
require the knowledge of the number of active users in the
system while populating the users’ cache memories. To eval-
uate the performance of these achievable schemes, we also
develop a lower bound on the required transmission sum rate
based on cut-set arguments. We show that the multiplicative
gap between the lower and upper bounds is bounded by a
constant. Furthermore, we observe numerically that this gap
vanishes as the memory size increases.

By virtue of the D2D model, the delivery load has to
be completely transferred from the server to the end users
during cache placement in this network, so that no matter
what file is demanded by a user, it can be delivered from other
users. As such, imposing secure caching requirement will also
facilitate secure delivery as we shall see in the sequel. In other
words, for the proposed schemes, secure delivery [22]–[24] is
also satisfied as a byproduct.

This work demonstrates that D2D communications can
effectively replace a server with full database access despite
the fact that each user accesses only a portion of the data-
base and that this is possible with a negligible transmission
overhead, while keeping the users ignorant about the database
contents. That is to say that, the performance of the system
under investigation and the one in [26] are very close to one
another for realistic values of the system parameters. We note
that while the centralized scheme and its performance were
presented in brief in the conference paper [33], the decentral-
ized coded caching scheme and the order-optimality results

Fig. 1. Device-to-device secure coded caching system.

are presented for the first time in this paper, along with proof
details of all results.

The remainder of the paper is organized as follows.
In Section II, we describe the system model. In Sections III and
IV, we detail the centralized and decentralized coded caching
schemes, respectively. Section V contains the derivation of
the lower bound. In Section VI, we demonstrate the system
performance by numerical results. Section VII summarizes
our conclusions. In the following, we will use the notation
[L] � {1, . . . , L}, for a positive integer L.

II. SYSTEM MODEL

Consider a network where a server, with a database of N
files, W1, . . . ,WN , is connected to K users. The files are N
independent random variables, each has size F bits and is
uniformly distributed over [2F ]. Each user equipped with a
cache memory with size M F bits, i.e., each user is capable
of storing M files. We denote by M the normalized cache
memory size and define Zk to represent the contents of the
cache memory at user k, where k ∈ {1, 2, . . . , K }. The system
operates over two consecutive phases, as depicted in Fig. 1.

A. Cache Placement Phase

In this phase, the server allocates functions of its database
into the users’ cache memories without the knowledge of file
demands. These possible allocations are designed to preserve
the memory capacity constraint at each user. This is made
precise by the following definition.

Definition 1 (Cache Placement): In the cache placement
phase, the server maps the files of its database to the cache
memories of the users. In particular, the content of the cache
memory at user k is given by

Zk = φk(W1,W2, . . . ,WN ), k = 1, 2, . . . , K , (1)

where φk : [2F ]N → [2F ]M .
In this work, aligned with the caching literature, e.g., [14],

[22]–[24], [26], we assume that the cache placement phase is
secure, i.e., it is not overheard by any unauthorized entity and
the cache contents of each user is not accessible to any other
user.
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B. Delivery Phase

During peak traffic, each user requests a file. The indices of
the requested files are represented by random variables. In par-
ticular, we assume that the demand distribution is uniform for
all users, and independent from one user to another [6], [15],
i.e., each user can request each file with equal probability,
1
N which is independent from the remaining users’ requests.
The index of the file requested by user k is dk ∈ [N], and
d = (d1, . . . , dK ) represents the demand vector of all users.
Similar to [15], we require that the delivery phase is carried
our by D2D communications only, i.e., the server participates
only in the cache placement phase. Therefore, we need the
caches at the users to be able to store the whole library,
collectively. Without secrecy requirements, we would need
K M ≥ N to accomplish this. In Section III, we will see
that a larger total memory constraint will be required in order
to satisfy the secrecy requirements. With the knowledge of
the demand vector d, user k maps the contents of its cache
memory, Zk , into a signal that is transmitted to all network
users over a noiseless interference-free multicast link. From
the K−1 received signals and Zk , user k must be able to decode
its requested file, Wdk , with negligible probability of error.
We have the following definition for encoding and decoding
at each user.

Definition 2 (Coded Delivery): The transmitted signal by
user k is given by

Xk,d = ψk(Zk, d), (2)

where ψk : [2F ]M×[N]K → [2F ]Rk is the encoding function,
Rk is the normalized rate of the transmitted signal by user k
and k ∈ [K ]. In addition, user k recovers its requested file as

Ŵdk = μk(Zk, d, X1,d , . . . , Xk−1,d , Xk+1,d , . . . , X K ,d), (3)

where μk : [2F ]M × [N]K × [2F ]
∑

i �=k Ri → [2F ] is the
decoding function, and k ∈ [K ].

Let RT = ∑K
i=1 Ri be the normalized sum rate of the

transmitted signals by all users.

C. System Requirements

During the delivery phase, the server remains silent, and
all users’ requests must be satisfied via D2D communications.
Therefore, we have the following reliability requirement.

Definition 3 (Reliability): For each user to recover its
requested file from its received signals and the contents of
its cache memory, we need

max
d,k∈[K ] Pr(Ŵdk �= Wdk ) ≤ ε, (4)

for any ε > 0.
We impose secure caching constraints on the system. In par-

ticular, we require that each user must be able to decode only
its requested file, and not be able to obtain any information
about the content of the remaining N − 1 files.

Definition 4 (Secure caching): For any δ1 > 0, we have

max
d,k∈[K ]

I (W−dk ; X−k,d , Zk) ≤ δ1, (5)

where W−dk = {W1, . . . ,WN }\{Wdk }, i.e., the set of all
files except the one requested by user k and X−k,d =
{X1,d, . . . , X K ,d } \ {Xk,d}, i.e., the set of all received signals
by user k.

We aim to minimize the sum rate during the delivery phase
under reliability and secure caching requirements. Formally,
we have the following definition.

Definition 5: The secure memory-rate pair (M, RT ) is said
to be achievable if ∀ε, δ1 > 0 and F →∞, there exists a set
of caching functions, {φk}Kk=1, encoding functions, {ψk}Kk=1,
and decoding functions, {μk}Kk=1, such that (4) and (5) are
satisfied. The optimal secure memory-rate trade-off is defined
as R∗T = inf{RT : (M, RT ) is achievable}.

We are also interested in the secure delivery requirement,
defined below.

Definition 6 (Secure Delivery): Any eavesdropper that
overhears the transmitted signals during the delivery phase
must not obtain any information about the contents of the
data phase files. Therefore, we have

max
d

I (W1, . . . ,WN ; X1,d, . . . , X K ,d ) ≤ δ2, (6)

for any δ2 > 0.
Remark 1: We will see that for the D2D setting we consider,

our proposed schemes for secure caching will automatically
satisfy the secure delivery requirement.

Remark 2: In general, secure delivery and secure caching
requirements do not have to imply one another. For instance,
if M ≥ N, secure delivery is trivially satisfied by storing the
entire database at each user during the cache placement phase
violating the secure caching requirements. An example for the
reverse scenario, i.e., where secure caching does not imply the
secure delivery can be found in subsection III-F.

We aim to minimize the total delivery load, i.e., the total
transmission rate, by designing the cache contents and the
delivery strategy while maintaining the secure caching require-
ment. The system design requires two steps.

1) Cache placement: The cached contents by each user,
by itself, must not reveal any information about the
system files. This makes the cache placement problem
relevant to the problem of multiple assignment in secret
sharing [27]–[29], in the sense that, we aim to distribute
the library over the set of end users such that the shares
assigned to each of them cannot reveal any information
about the files. One main factor that distinguishes the
placement strategy from the classical multiple assign-
ment in secret sharing is that the size of shares allocated
to each user must not exceed its cache storage capacity,
M F .

2) Delivery: Each user must be able to decode only its
requested file. With the D2D model, we require the
system to maintain self-sustainability without the par-
ticipation of the server during the delivery phase. Thus,
the caches’ contents at all users collectively must be able
to regenerate the entire library.

In the following two sections, we provide two schemes that
minimize the delivery load while maintaining the systems’
requirements.



1516 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

III. CENTRALIZED CODED CACHING SCHEME

In this section, we consider a scenario where the server is
able to perform cache placement in a centralized manner. That
is, the server knows the total number of users in the system, K ,
at the beginning of the cache placement phase. We utilize non-
perfect secret sharing schemes [30], [34], [35] to encode the
database files. The basic idea of the non-perfect secret sharing
schemes is to encode the secret in such a way that accessing
a subset of shares does not reduce the uncertainty about the
secret, and only accessing all shares does. For instance, if the
secret is encoded into the scaling coefficient of a line equation,
the knowledge of one point on the line does not reveal any
information about the secret as there remain infinite number
of possibilities to describe the line. One can learn the secret
only if two points on the line are provided, and then can do so
precisely. We will utilize non-perfect secret sharing schemes,
formally defined as follows.

Definition 7 [34]: For a file W with size F bits,
an (m, d, n) non-perfect secret sharing scheme generates n
shares, S1, S2, . . . , Sn, such that accessing any m − d shares
does not reveal any information about the file W, i.e.,

I (W ;S) = 0, ∀S ⊆ {S1, S2, . . . , Sn}, |S| ≤ m − d. (7)

Furthermore, the knowledge of any m shares is sufficient to
reconstruct the secret, i.e.,

H (W |A) = 0, ∀A ⊆ {S1, S2, . . . , Sn}, |A| ≥ m. (8)

For large enough F , an (m, d, n) non-perfect secret sharing
scheme exists with shares of size equals to F

d bits [30], [34],
[35]. We chose to use schemes from this class as they give
shares with sizes equal to the secret size divided by the gap,
F
d bits. By contrast, perfect secret sharing schemes [36] give
shares of size equal to the secret size, F bits. Therefore,
the non-perfect secret sharing schemes are more efficient in
our case in terms of storage and delivery load.

A. Cache Placement Phase

First, we present a scheme that works for M = Nt
K−t + 1

t +1,
and t ∈ [K − 1], noting that the remaining values of M can
be achieved by memory sharing [6]. That is, for any value of
M , we pick the most two adjacent values, M1 and M2, such
that Mi = Nt

K−ti
+ 1

ti
+ 1, i = 1, 2, ti ∈ [K − 1], and M1 ≤

M ≤ M2. We determine the sharing parameter α ∈ [0, 1],
by solving the equation M = αM1 + (1 − α)M2. Then, each
file, Wn , is divided into two subfiles, W 1

n and W 2
n , of sizes

αF and (1− α)F bits, respectively. The achievability scheme
is obtained by applying the scheme designed for the system
with memory Mi on the subfiles W i

n , and i = 1, 2.
As a first step, the server encodes each file in the

database using a non-perfect secret sharing scheme [30],
[34], [35]. In particular, a file, Wn , is encoded using
a

(
t
(K

t

)
, t

(K
t

)− t
(K−1

t−1

)
, t

(K
t

))
non-perfect secret sharing

scheme. Each share, with size Fs bits, is denoted S j
n,T , where

j = 1, . . . , t , and T ⊆ [K ] with |T | = t , and

Fs = F

t
(K

t

)− t
(K−1

t−1

) = F

(K − t)
(K−1

t−1

) . (9)

Algorithm 1 Cache Placement Procedure
Require: {W1, . . . ,WN }
Ensure: Zk, k ∈ [K ]
1: for l ∈ [N] do
2: Encode Wl using an (t

(K
t

)
, t

(K
t

) − t
(K−1

t−1

)
, t

(K
t

)
) non-

perfect secret sharing scheme→ S j
l,T , j = 1, . . . , t , and

T ⊆ [K ] with |T | = t .
3: end for
4: for TK ⊆ [K ] with |TK | = t + 1 do
5: Generate independent keys K i

TK
, i = 1, . . . , t + 1.

6: end for
7: for k ∈ [K ] do
8: Zk ←

{
K i
TK
: k ∈ TK ,∀i

}
∪⋃

l∈[N]
{

S j
l,T : k ∈ T ,∀ j

}
9: end for

We refer to the set T by the allocation set as it determines how
the shares will be allocated in the users’ caches. In particular,
the server places the shares S j

n,T , ∀ j, n in the cache of user k
whenever k ∈ T . Also, the parameter t can be see as number
of users that will store the same share.

Additionally, the server generates (t + 1)
( K

t+1

)
indepen-

dent keys, i.e., they are independent from one another and
independent from the library files. In particular, each key is
uniformly distributed over [2Fs ], and is denoted by K i

TK
, where

i = 1, . . . , t +1, and TK ⊆ [K ] with |TK | = t+1. The server
places the keys K i

TK
, ∀i , in user k’s cache if k ∈ TK , i.e., TK

represents the key allocation set. Therefore, the cached content
by user k at the end of the cache placement phase is given by

Zk =
{

Si
n,T , K j

TK
: k ∈ T ,TK , and ∀i, n, j

}
. (10)

We summarize the cache placement procedure in Algorithm 1.
In the following remark, we verify that this placement satisfies
the cache memory capacity constraint.

Remark 3: In the aforementioned placement scheme, each
user stores t

(K−1
t−1

)
shares of each file and (t+1)

(K−1
t

)
distinct

keys, thus the accumulated number of cached bits is given by

Nt
(K−1

t−1

)
Fs + (t + 1)

(K−1
t

)
Fs = Nt

K−t F + (1+ 1
t )F= M F.

(11)

It follows that we have

t = 1+ (M − 1)K +
√
(1− (M − 1)K )2 − 4K N

2(N + M − 1)
. (12)

Clearly, the proposed allocation scheme satisfies the cache
memory capacity constraint at each user.

Remark 4: We note that the minimum value of the nor-
malized cache size, M, that is need to apply the proposed
scheme is Mmin = M|t=1 = 2 + N

K−1 . For a system without
secrecy requirements [15], we need M ≥ N

K , while with
secure delivery, the scheme in [23] requires M ≥ 2 + N−2

K .
It is evident that, with secrecy requirements, more memory is
required, as the users not only cache from the data but also
cache the secure keys.



ZEWAIL AND YENER: DEVICE-TO-DEVICE SECURE CODED CACHING 1517

Algorithm 2 Delivery Procedure
Require: d
Ensure: Xk,d , k ∈ [K ]
1: for k ∈ [K ] do
2: for S ∈ [K ], |S| = t + 1, k ∈ S do
3: XS

k,d ← ⊕l∈S\{k}S j
dl ,S\{l} ⊕ K i

S , for some choice of i
and j

4: end for
5: Xk,d ← ⋃

S⊆[K̂ ],k∈S {XS
k,d }

6: end for

B. Coded Delivery Phase

At the beginning of the delivery phase, each user requests
one of the N files and the demand vector is known to all
network users. To derive an upper bound on the required
transmission sum rate, we focus our attention on the worst
case scenario. We concentrate on the more relevant scenario
of N ≥ K .

The delivery procedure consists of
( K

t+1

)
transmission

instances. At each transmission instance, we consider a set
of users S ⊆ [K ], where |S| = t + 1. We refer to S as the
transmission set. For k ∈ S, user k multicasts the following
signal of length Fs bits

XS
k,d = ⊕l∈S\{k}S j

dl ,S\{l} ⊕ K i
S . (13)

Note that the index i is chosen such that each key is used
only once, while the index j is chosen to ensure that each
transmission is formed by shares that had not been transmitted
in previous transmissions by the other users in S. For example,
they can be chosen as the relative order of the user’s index
with respect to the indices of the remaining users in S. Thus,
in total, the transmitted signal by user k can be expressed as

Xk,d =
⋃

S : k∈S, S⊆[K ],|S|=t+1

{XS
k,d}. (14)

Observe that the cache memories of the users from any subset,
St ⊂ S, with |St | = t contain t shares of the file requested by
the user in S \ St , as can be seen from (10). Thus, utilizing
its cache contents, each user in S obtains t shares from its
requested file during this instance of transmission, i.e., the
user in S \ St obtains the shares S j

dS\St ,St
∀ j .

Observe also that user k belongs to
(K−1

t

)
different choices

of such subsets of the users, thus at the end of the delivery
phase, user k obtains t

(K−1
t

)
new shares of its requested files,

in addition to the cached t
(K−1

t−1

)
shares. Therefore, user k

can decode its requested file from its t
(K

t

)
shares, i.e., the

reliability requirement (4) is satisfied. Delivery procedure is
summarized in Algorithm 2.

C. Rate Calculation

Now, we focus our attention on calculating the required
transmission rate. Note that there are

( K
t+1

)
different choices

of the set S. For each choice, t + 1 signals of length Fs bits
are transmitted, thus the total number of the transmitted bits

is given by

RT F = (t + 1)

(
K

t + 1

)
Fs = K

t
F. (15)

Consequently, we can achieve the following normalized sum
rate

RT = 2K (N + M − 1)

1+ (M − 1)K +
√
(1− (M + 1)K )2 − 4K N

. (16)

Therefore, we can state the following theorem.
Theorem 1: Under centralized placement, for M = Nt

K−t +
1
t + 1, and t ∈ [K − 1], the secure sum transmission rate is
upper bounded by

R∗T ≤ RC
T ≤

2K (N + M−1)

1+ (M−1)K +
√
(1−(M−1)K )2−4K N

. (17)

In addition, using memory sharing [6], we can achieve the
convex envelope of the points given by the values M= Nt

K−t+
1
t +1, and t ∈ [K − 1].

D. Secrecy Analysis

For user k, the cache’s contents, Zk given by (10), con-
tains only t

(K−1
t−1

)
shares, from each file, resulting from

a
(

t
(K

t

)
, t

(K
t

)− t
(K−1

t−1

)
, t

(K
t

))
non-perfect secret sharing

scheme. Therefore, Zk , by itself, cannot reveal any information
about the files to user k.

During the delivery phase, if at any instance, user k belongs
to the transmission set, S, then the transmitted signals are
formed from the shares of the requested file by user k, Wdk ,
and shares that have been already placed in the cache of user
k during the cache placement phase, i.e., from Zk . When user
k does not belong to the transmission set, all the transmitted
signals are encrypted using one-time pads, unknown to user
k, thus, user k cannot gain any information from these signals
[31]. Therefore, the secure caching constraint, (5), is satisfied.

We observe that the server has generated (t + 1)
( K

t+1

)
independent keys with lengths equal to the share size. Thus,
with a proper selection of the encrypting key for each trans-
mission, we can ensure a unique use of each key, i.e., one-time
padding. The above discussion implies that the secrecy of the
transmitted signals, from any external wiretapper that accesses
the network links during the delivery phase, is also guaranteed
[31]. One-time pads are essential to ensure the secure caching
requirement in (5), whereas the secure delivery requirement in
(6), is satisfied as a byproduct.

E. An Illustrative Example

Consider a system with four users and a library consists of
four files, W1,W2,W3,W4, i.e., K = N = 4. Each user has
a normalized memory size M = 11

2 , which gives us t = 2
and indicates that each of the resulting shares will be cached
by two different users. The server encodes each file using
(12, 6, 12) non-perfect secret sharing scheme. For a file, Wn ,
the server generates 12 shares, which we label by Si

n,T where
i = 1, 2, T ⊂ {1, 2, 3, 4} and |T | = 2, each of size F/6 bits.
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Furthermore, the server generates the set of keys K j
TK

,
uniformly distributed over {1, . . . , 2F/6}, where j = 1, 2, 3,
TK ⊂ {1, 2, 3, 4} and |TK | = 3.

User k stores the shares Si
n,T , and the keys K j

TK
whenever

k ∈ T and k ∈ TK , ∀n, j, i , respectively. Therefore, the cache
contents at the users are given by

Z1 =
{

Si
n,12, Si

n,13, Si
n,14, ∀n, i, K j

123, K j
124, K j

134, ∀ j
}
,

Z2 =
{

Si
n,12, Si

n,23, Si
n,24,∀n, i, K j

123, K j
124, K j

234, ∀ j
}
,

Z3 =
{

Si
n,13, Si

n,23, Si
n,34,∀n, i, K j

123, K j
134, K j

234, ∀ j
}
,

Z4 =
{

Si
n,14, Si

n,24, Si
n,34,∀n, i, K j

124, K j
134, K j

234, ∀ j
}
.

Each user caches 6 shares of each file. We observe that
the caches will not be able to reveal any information about
the unrequested files thanks to the non-perfect secret sharing
encoding. Also, note that the cache capacity constraints at all
the users are satisfied.

Now, consider the delivery phase, where user k requests the
file Wk , i.e., d = (1, 2, 3, 4). In this case, the users transmit
the following signals.

X1,d =
{

S1
2,13 ⊕ S1

3,12 ⊕ K 1
123, S1

4,13 ⊕ S1
3,14 ⊕ K 1

134,

S1
2,14 ⊕ S1

4,12 ⊕ K 1
124

}
,

X2,d =
{

S2
1,23 ⊕ S2

3,12 ⊕ K 2
123, S2

4,23 ⊕ S2
3,24 ⊕ K 2

234,

S2
1,24 ⊕ S2

4,12 ⊕ K 2
124

}
,

X3,d =
{

S1
1,23 ⊕ S2

2,13 ⊕ K 3
123, S2

4,13 ⊕ S1
1,34 ⊕ K 2

134,

S1
2,34 ⊕ S1

4,23 ⊕ K 3
234

}
,

X4,d =
{

S1
1,24 ⊕ S2

2,14 ⊕ K 3
124, S2

1,34 ⊕ S2
3,14 ⊕ K 3

134,

S2
2,34 ⊕ S1

3,24 ⊕ K 1
234

}
.

From its received signals, X2,d , X3,d and X4,d , and utilizing
its cached content, user 1 gets S1

1,23, S2
1,23, S1

1,24, S2
1,24, S1

1,34
and S2

1,34. Thus, user 1 can reconstruct its requested file, W1,
from its 12 shares. Similarly, users 2, 3 and 4 are able to
decode files W2, W3 and W4, respectively.

We observe that user k will only obtain new shares of
its requested file Wk , thus it cannot gain any information
about the remaining files, {W1,W2,W3,W4} \ {Wk}. This
is done by proper selection of the keys so that each user
cannot gain any information about the remaining three files.
In addition, each signal is encrypted using one-time pad which
ensures the secrecy of the database files from any external
eavesdropper as in [23]. In this delivery procedure, each user
participates by 3 distinct transmissions, each of size F/6 bits,
thus RC

T = 2. Comparing with the system in [26], where
the server is responsible for the delivery phase, we see that
a normalized secure rate � 1.3 is achievable, for the same
system parameters. This difference is due to limited access
of the shares at each user, unlike the case in [26] where the
server can access all shares during the delivery phase, i.e., the
cost of having D2D delivery.

F. Secure Caching Without Secure Delivery for
M = N(K − 1)

The scheme described above ensures that the requirements
in (5) (and (6)) are satisfied. The encryption keys are essential

to achieve both. In the following, we study a special case
where we can provide a scheme that achieves secure caching,
i.e., satisfy (5), without the necessity of satisfying the secure
delivery constraint, i.e., (6). More specifically, when M =
N(K − 1), we can achieve a normalized rate equals to K

K−1
without utilizing encryption keys. In particular, each file is
encoded using (K (K − 1), K − 1, K (K − 1)) non-perfect
secret sharing scheme. The resulting shares, each of size
Fs = F

K−1 bits, are indexed by S j
n,i , where n is the file index,

j = 1, . . . , K − 1, and i = 1, . . . , K . The server allocates the
shares S j

n,i , ∀ j, n and i �= k in the memory of user k, i.e.,

Zk = {S j
n,i : ∀ j, n and i �= k}. (18)

Thus, each user stores N(K − 1)2 shares, which satisfies the
memory capacity constraint.

At the beginning of the delivery phase, each user announces
its request. Again, we assume that the users request different
files. User k multicasts the following signal to all other users

Xk,d = ⊕l∈[K ]\{k}S j
dl ,l
, (19)

where j is chosen to ensure that each transmission is formed
by fresh shares which had not been included in the previous
transmissions. From its received K − 1 signals, user k can
extract the shares S j

dk ,k
, ∀ j . By combining these shares with

the ones in its memory, user k recovers its requested file,
Wdk . The total number of bits transmitted under this scheme
is RT F = K Fs . Thus, the following normalized sum rate,
under the secure caching constraint (5), is achievable for
M = N(K − 1),

RT = K

K − 1
. (20)

This rate matches the cut set bound as in Section V.

G. Discussion

The above scheme, in subsection III-F, satisfies only the
secure caching constraint (5), without ensuring the protection
from any external eavesdropper that overhears the transmitted
signals during the delivery phase. On the other hand, the gen-
eral scheme, presented in subsections III-A and III-B, achieves
the same rate, i.e., RC

T = K
K−1 , when M = N(K − 1)+ K

K−1 ,
while satisfying the secure caching constraint (5) and the
secure delivery constraint (6), simultaneously. In other words,
an additional memory at each user with size K

K−1 F bits
is required to ensure the additional requirement of secure
delivery.

We observe that the encryption keys serve to satisfy both the
secure caching and secure delivery requirements. Therefore,
one can think about the satisfaction of the secure delivery
requirement as a byproduct of the general scheme in sub-
sections III-A and III-B, i.e., the secure delivery comes for
free while satisfying the secure caching constraint, whenever
M ≤ N(K−2)

2 + 1
K−2 + 1. Under different network topologies,

secure delivery may require additional cost. For example,
in recent reference [14], we have shown that there is no need to
use encryption keys to satisfy the secure caching requirements
in the setting of combination networks. This is possible due
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to the unicast nature of the network links, which is not the
case in the system under investigation, as we assume that the
users communicate with each other via multicast links.

IV. DECENTRALIZED CODED CACHING SCHEME

In this section, we provide a decentralized coded caching
scheme, [37], for our setup. The proposed scheme is moti-
vated by the ones in [32] for multicast coded caching setup
without secrecy requirements [6], [37]. It does not require the
knowledge of the number of active users of the delivery phase
during cache placement. This scheme operates over two phases
as follows.

A. Cache Placement Phase

The main idea of the cache placement scheme is to design
the cache contents for a number of users L that is less than
the number of users in the system during the delivery phase,
i.e., K . L is in effect a lower bound on the expected number
of active users in the system.

For a given L and M = Nt
L−t+ 2

t +1, and t ∈ [L−1], each file
in the database is encoded using a suitable non-perfect secret
sharing scheme. In particular, a file, Wn , is encoded using an(

t
(L

t

)
, t

(L
t

)− t
(L−1

t−1

)
, t

(L
t

))
non-perfect secret sharing scheme.

We obtain t
(L

t

)
shares, each with size F̄s , where

F̄s = F

t
(L

t

)− t
(L−1

t−1

) = F

(L − t)
(L−1

t−1

) . (21)

Each share is denoted by S j
n,T , where n is the file index,

i.e., n ∈ [N], j = 1, . . . , t , and T ⊆ [L] with |T | = t . The
server prepares the following set of cache contents, Z̄l ,

Z̄l = {S j
n,T : l ∈ T , ∀ j, n}, l = 1, 2, . . . , L . (22)

Once user k joins the system, it caches the content Z̄lk where
lk = k mod L. Such allocation results in dividing the set of
active users into � K

L � virtual groups. In particular, we group
the first L users to join the system in group 1, and the users
from L + 1 to 2L in group 2 and so on. Note that each group
from 1 to � K

L � − 1 contains L users, and the group � K
L �

contains K − (� K
L � − 1)L users. These groups are formed

sequentially in time.
As explained in Section III, we require the server to generate

a set of random keys to be shared between the users. For group
u, u = 1, . . . , � K

L � − 1, the server generates the keys K i
u,TK

,
where i = 1, . . . , t + 1, TK ⊆ [L] and |TK | = t + 1. Each
key is uniformly distributed over [2F̄s ]. User lk from group u
stores the keys K i

u,TK
, ∀i , whenever lk ∈ TK .

In addition, the server generates the keys K i
u∗,TK

, where
i = 1, . . . , t + 1, and TK ⊆ [L], |TK | = t + 1, and allocates
these keys in the cache memories of the users in groups 1 and
� K

L � as follows. The keys {K i
u∗,TK

, ∀i} are cached by user

lk from group � K
L �, as long as lk ∈ TK . User lk from group

1 stores the keys K j
u∗,TK

for only one specific j whenever
lk ∈ TK . This index j is chosen such that the users from
group 1 store different keys.

In summary, at the end of cache placement, cache contents
of user k are given by

Zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Z̄lk , K i
1,TK

, K j
u∗,TK

: lk ∈ TK ,∀i, for a specific j},
if 1 ≤ k ≤ L,

{Z̄lk , K i
u,TK
: u = � k

L �, lk ∈ TK ,∀i},
if L+1 ≤ k ≤ K−(� K

L �−1)L,

{Z̄lk , K i
u∗,TK

: lk ∈ TK ,∀i},
if K−(� K

L �−1)L +1 ≤ k ≤ K .

(23)

Remark 5: We need to ensure that this allocation procedure
does not violate the memory capacity constraint at each user.
Observe that each user stores the same amount of the encoded
file shares, however, the users from group 1 stores more keys
than the other users. Thus, satisfying the memory constraint at
the users in group 1 implies satisfying the memory constraint
at all network users. Each user in group 1 stores Nt

(L−1
t−1

)
shares and (t + 2)

(L−1
t

)
keys. Thus, the total number of the

stored bits is given by

Nt

(
L−1

t−1

)
F̄s+(t+2)

(
L−1

t

)
F̄s= Nt

L−t
F+(1+2

t
)F=M F,

(24)

and from (24), we get

t = 2 + (M − 1)L +
√
(2 − (M − 1)L)2 − 8L N

2(N + M − 1)
. (25)

Therefore, the proposed scheme satisfies the cache capacity
constraint at each user.

B. Coded Delivery Phase

We focus our attention on the worst case demand, where K
users request K different files. The delivery phase is divided
into � K

L � stages. At each stage, we focus on serving the users
of one group. For any stage u, where u = 1, . . . , � K

L � − 1,
the delivery process during stage u is performed in a way
similar to the one described in subsection III-B with K = L
to serve the requests of users in group u. In particular, at each
transmission instance, we consider S ⊆ [L], where |S| = t+1.
User k, with lk ∈ S, multicasts a signal, of length F̄s bits, given
by

K i
u,S ⊕lv∈S\{lk} S j

dv ,S\{lv }, (26)

where the index i is chosen in way that guarantees the
uniqueness of the key utilized for each transmission. From the
cache placement phase, we observe that any t users belong to
the set S share t shares of the file requested by the remaining
user that is in S. Thus, each user in S obtains t shares from its
requested file during this instance of transmission. At the end
of stage u, each user from group u can decode its requested
file from its t

(L
t

)
shares.

Since, there are
( L

t+1

)
different choices of the set S, and for

each choice t+1 signals of length F̄s are transmitted, the total
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number of the transmitted bits to serve the users from group
u is

Ru F = (t+1)

(
L

t+1

)
F̄s = L

t
F, u = 1, . . . , �K

L
�−1. (27)

Now, we focus on serving the users of the last group,
i.e., group � K

L �. First, recall that the number of users in
this group is p � K − (� K

L � − 1)L < L, thus these users
cannot satisfy their requests via device-to-device communica-
tions between them only. We require some of the users from
group 1 to participate in this last stage of the delivery phase.
In particular, the users indexed by lk , with łk = p+ 1, . . . , L,
from group 1 forms a virtual group with the users from group
� K

L �, such that the resulting group contains L users. Note that,
at this stage, the requests of the users from group 1 have been
already served, during stage 1. Therefore, at each transmission
instance, we consider only the sets S ⊆ [L], where |S| = t+1
with lk ∈ S and lk ∈ [p]. We define the sets Su∗ and Sc

u∗
to represent the subset of S that contains the users from
group � K

L � and group 1, respectively, i.e., Su∗ ∪ Sc
u∗ = S.

Since, we only care now about serving the users in group
� K

L �, we neglect any set S with Su∗ = {}. For the sets that
contain only one user, user k, from group � K

L �, i.e., lk ∈ Su∗ ,
|Su∗ | = 1, and |Sc

u∗ | = t , each user in the set Sc
u∗ transmits

K j
u∗,S ⊕ Si

dk ,S\{lk }, (28)

where i is chosen to ensure that from every transmission user
k obtains a different share from its requested file.

For the sets that contain more than one user from group
� K

L �, i.e., |Su∗ | ≥ 2, each user in the set S multicasts a signal
of length F̄s given by

K j
u∗,S ⊕lv∈Su∗\{lk} Si

dv ,Su∗\{lv }. (29)

By taking into account all possible sets with |Su∗ | ≥ 1,
the total number of the transmitted bits during this stage is
given by

Ru∗F = pt

(
L − p

t

)
F̄s +

min(p,t)∑
u=2

(t + 1)

(
L − p

t − u + 1

)
F̄s . (30)

Consequently, we can obtain the following upper bound on
the normalized sum rate

RD
T = Ru∗ +

(
�K

L
�−1

)
Ru . (31)

Theorem 2: For any integer L ≤ K , M = Nt
L−t + 2

t +1, and
t ∈ [L − 1], the secure sum rate under decentralized coded
caching is upper bounded by

R∗T ≤ RD
T ≤

2L(N + M − 1)
(� K

L � − 1
)

2+(M−1)L+
√
(2−(M−1)L)2−8L N

+ pt〈(L−p
t

)〉 +∑min(p,t)
u=2 (t + 1)〈( L−p

t−u+1

)〉
(L − t)

(L−1
t−1

) , (32)

where 〈(h
r

)〉 = (h
r

)
whenever h ≥ r and 0 otherwise, and

p = K − (� K
L �− 1)L. In addition, the convex envelope of the

above points, defined for each M, is also achievable.

Using memory sharing [6], we can achieve the convex
envelope of the points given by the values M = Nt

L−t + 2
t + 1,

and t ∈ [L − 1].

C. Discussion

In the decentralized coded caching scheme proposed in [22],
for server-based coded caching with secure delivery, key
placement is done in a centralized manner after a decentralized
caching of a fraction M−1

N−1 of each file, without the knowledge
of the users’ demands. For server-based systems with secure
caching, a decentralized scheme was proposed in [26].

We note that developing decentralized schemes for D2D
coded caching systems is more involved compared with decen-
tralized schemes for server-based coded caching systems [6].
This due to the requirement that in D2D the server must
disengage the delivery process, i.e., the end users collectively
must possess pieces of the entire library. When there are no
secrecy requirements, reference [15] has proposed a decen-
tralized D2D coded caching scheme, which utilizes maximum
distance separable (MDS) codes to encode the files at the
server to satisfy the users’ requests without the participation
of the server during the delivery phase.

For our D2D secure coded caching, we utilize a grouping-
based approach that allows disengaging the server from the
delivery phase, and the key placement is done during the
cache placement phase, without the knowledge of the users’
demands. We choose this grouping-based approach instead
of utilizing the MDS encoding in [15], as each user not
only needs to store the keys used in encrypting its intended
signals but also the keys that are used to encrypt its transmitted
signals. Therefore, applying a decentralized cache placement
based on MDS coding requires the users to dedicate a large
fraction of their cache memories for the keys to be allocated
by the server during the delivery phase after announcing the
demand vector. By contrast, our proposed scheme ensures a
practical self-sustainable system with reasonable fraction of
each cache memory dedicated to encryption keys. Once a
group of L users joins the system, sequentially, the server can
place the keys in the memories of these users. At the end of the
cache placement phase, before the beginning of the delivery
phase, the server allocates the keys to be used in encrypting the
signals intended to the last group in the caches of the users of
the first and the last group. We remark that this grouping-based
approach can be used to develop new decentralized schemes
for multicast coded caching scenarios with secure delivery and
secure caching that were considered in [22], [23], and [26] as
well.

We observe, from (23), that the cache memory at each user
is divided into two partitions, one for the shares of the files,
and the other one for the keys. The partition assigned for the
shares Z̄l can be identical in multiple users. Thus, encrypting
the signal with a one-time pad is necessary to satisfy the
secure caching requirement. Note that each user from group
1 which participates in the last stage of the delivery phase,
knows only the keys that it will use to encrypt its transmitted
signal, thus it cannot gain any new information from the
signals transmitted during this last stage. The secure delivery
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requirement is satisfied as a byproduct as in the centralized
scheme of Section III.

1) The Choice of L: A key element in designing the
aforementioned semi-decentralized scheme, is the choice of
the parameter L, which can be determined by observing the
number of users in the system during the peak traffic hours
over a sufficient amount of time. Then, we can choose L as
the minimum value among the observed numbers of users in
the system. We note that as long as L is close to K , the exact
number of active users in the system, we can benefit from more
multicast opportunities which helps in reducing the overall
delivery load.

We note that a minor potential drawback of the provided
scheme is that some users cache memories may be under-
utilized by a small fraction. In particular, other than the users
from group 1 who participate in serving the last group, a very
small fraction of size, 1

t , that is not scaled with the library
size, is not utilized from each user memory. This fraction can
be see as a cost for disengaging the server from the delivery
phase. This fraction cannot be used to cache from data directly
due to the secure caching requirement. A good estimate of L,
i.e., choosing L close to K , will reduce the number of users
that do not fully utilize their memory.

2) User Mobility During the Placement Phase: If a user,
f , leaves the system during the cache placement phase, then
its cached contents, Z f , should be assigned by the server to
populate the cache memory of the first user to join the system
after this departure. If no user joins the system before the
beginning of the delivery phase, then the server can update
the contents of the last user that joined the system with Z f .

V. LOWER BOUND

In this section, we derive a lower (converse) bound on the
normalized sum of the required sum rate. The derivation is
based on cut-set arguments [38], similar to [15], [39].

Assume that the first s users, where s ∈
{1, 2, . . . ,min(N/2, K )}, request the files from 1 to
s, such that user i requests Wi , i ∈ {1, 2, . . . , s}.
The remaining users are assumed to be given their
requested files by a genie. We define X1 to represent
the transmitted signals by the users to respond to these
requests, i.e., X1 = {X1,(1,...,s), . . . , X K ,(1,...,s)}. At
the next request instance, the first s users request the
files from s + 1 to 2s, such that user i requests Ws+i .
These requests are served by transmitting the signals
X2 = {X1,(s+1,...,2s), . . . , X K ,(s+1,...,2s)}. We proceed in the
same manner, such that at the request instance q , the first
s users request the files from (q − 1)s + 1 to qs, such
that user i requests W(q−1)s+i , and the users transmit the
signals Xq = {X1,((q−1)s+1,...,qs), . . . , X K ,((q−1)s+1,...,qs)},
where q ∈ {1, . . . , �N/s�}. In addition, we define
X̄q = {Xs+1,((q−1)s+1,...,qs), . . . , X K ,((q−1)s+1,...,qs)} to
denote the set of the transmitted signals by the users indexed
by s + 1 to K at request instance q .

From the received signals over the request instances
1, 2, . . . , �N/s� and the information stored in its cache,
i.e., Zi , user i must be able to decode the files
Wi ,Wi+s , . . . ,Wi+(�N/s�−1)s . Consider the set of files W̄ =

{W1, . . . ,W(q−1)s+k−1,W(q−1)s+k+1, . . . ,Ws�N/s�}, i.e., the
set of all requested files excluding the file, W(q−1)s+k , which
was requested by user k at the request instance q . Therefore,
we have

(s�N/s� − 1)F

= H (W̄)

≤ H (W̄)− H (W̄|X1, . . . , X�N/s�, Z1, . . . , Zs)+ ε (33)

= I (W̄; X̄1, . . . , X̄�N/s�, Z1, . . . , Zs)+ ε (34)

= I (W̄; X̄q, Zk)+ I (W̄; X̄1, . . . , X̄q−1, X̄q+1, . . . , X̄�N/s�,
Z1, . . . , Zk−1, Zk+1, . . . , Zs |X̄q, Zk)+ ε. (35)

Step (33) follows from (4) as the users must be able to
decode their requested files utilizing their cache’s contents and
received signals. To simplify the notation, we define

X = {X̄1, . . . , X̄q−1, X̄q+1, . . . , X̄�N/s�}
and Z = {Z1, . . . , Zk−1, Zk+1, . . . , Zs}.

Now, (35) can be expressed as

I (W̄; X̄q, Zk)+ I (W̄;X ,Z|X̄q, Zk)+ ε
≤ I (W̄;X ,Z|X̄q, Zk)+ ε + δ (36)

= H (X ,Z|X̄q , Zk)− H (X ,Z|W̄, X̄q , Zk)+ ε + δ (37)

≤ H (X ,Z|X̄q , Zk)+ ε + δ (38)

≤ H (X ,Z)+ ε + δ (39)

= H (X )+ H (Z|X )+ ε + δ (40)

≤ H (X )+ H (Z)+ ε + δ (41)

≤
�N/s�∑

j=1, j �=q

H (X̄ j )+
s∑

i=1,i �=k

H (Zi)+ ε + δ (42)

≤ (�N/s� − 1)
K − s

K
RF + (s − 1)M F + ε + δ. (43)

Note that step (36) is due to (5). Therefore, we can get

RT ≥ K [(s�N/s� − 1)− (s − 1)M]
(�N/s� − 1)(K − s)

. (44)

Taking into account all possible cuts, we obtain the lower
bound stated in the following theorem.

Theorem 3: The achievable secure rate is lower bounded
by

R∗T ≥ max
s∈{1,2,...,min(K ,N/2)}

K [(s�N/s� − 1)− (s − 1)M]
(�N/s� − 1)(K − s)

. (45)

Remark 6: We note that R∗T ≥ K
K−1 , which is obtained by

setting s = 1 in Theorem 3, can be achieved whenever M ≥
N(K − 1), using the proposed scheme in subsection III-F.

In addition, the multiplicative gap between the upper bound
in Theorem 1 and the above lower bound is bounded by a
constant as stated in the following theorem.

Theorem 4: For M ≥ 2 + N
K−1 , there exists a constant, c,

independent of all the system parameters, such that

1 ≤ RC
T

R∗T
≤ c. (46)

Proof: See the Appendix. �
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Fig. 2. Comparison between the required transmission rates under different
system requirements for N = K = 30.

Fig. 3. The achievable secure rates for the single server and D2D coded
caching for N = K = 30.

VI. NUMERICAL RESULTS

In this section, we demonstrate the performance of the
proposed schemes numerically. Fig. 2 shows the performance
of D2D coded caching systems under different requirements.
In particular, we compare our system that provides both secure
caching and secure delivery with the system with just secure
delivery [23] and the one with no secrecy constraints [15].
For the latter two cases, the rate is equal to zero wherever
M ≥ N , as the entire database can be stored in each cache
memory. However, by setting s = 1 in the lower bound stated
in Theorem 3, we get that the sum rate under secure caching
is bounded below by K

K−1 .
In Fig. 3, we compare the performance of our system and the

one considered in [26]. As expected, the system, in [26], where
the server, with full access to the file shares, is responsible for
the delivery phase, achieves lower transmission rate compared
with the considered setup where the delivery phase has to be
performed by users, each of which has limited access to the
files shares. Interestingly, we observe that the gap between the
required transmission rates vanishes as M increases, i.e., the
loss due to accessing a limited number of shares at each user
is negligible when M is sufficiently large.

Fig. 4 shows that the gap between the lower and upper
bounds decreases as M increases. As mentioned before, The-
orem 3 points out that the sum rate is bounded below by K

K−1 ,
by setting s = 1. For large enough M , our proposed schemes
achieves a sum rate equal to K

K−1 , which matches the lower
bound.

Fig. 4. The upper bound vs the lower bound for N = K = 100.

Fig. 5. Achievable rates via decentralized and centralized schemes N =
K = 100.

In Fig. 5, we plot the achievable rates under different
choices of L in a system with K = 100. It is worth
noting that even with L = 60, which is much smaller than
the number of users in the system (K ), the gap between
the achievable rate using the decentralized and centralized
schemes is negligible for realistic values of M . In other words,
even with a inaccurate lower bound of the number of users in
the system K , the proposed decentralized scheme performs
very close to the centralized one.

VII. CONCLUSION

In this work, we have characterized the fundamental limits
of secure device-to-device coded caching systems. We have
investigated a cache-aided network, where the users’ requests
must be served via D2D communications only. We have
imposed secure caching constraint on all users, i.e., a user
cannot obtain any information about any file that he had not
requested. We have developed an achievable centralized coded
caching scheme for this network, where the server encodes
each file using a proper non-perfect secret sharing scheme
and generates a set of random keys. The resulting shares
and keys are carefully placed in the users’ cache during the
cache placement phase. After announcing the users’ demands,
each user transmits a one-time padded signal to the remaining
users. In addition, we have provided a sequential decentralized
scheme that does not require the knowledge of the number
of the active users for cache placement. As a byproduct of
the proposed achievability schemes, the system also keeps the
files secret from any external eavesdropper that overhears the
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delivery phase, i.e., the secure delivery is also guaranteed.
We have derived a lower (converse) bound based on cut-set
arguments. Furthermore, we have shown that our proposed
scheme is order-optimal and optimal in the large memory
region. Our numerical results indicate that the gap between
the lower and upper bounds decreases as the cache memory
capacity increases. Similarly, the performance of centralized
and decentralized schemes are very close for large memories.
Overall, we have shown that the D2D communications can
replace the server in the delivery phase with a negligible trans-
mission overhead. This offers an affirmation of D2D communi-
cations’ significant role in upcoming communication systems.

APPENDIX A
PROOF OF THEOREM 4

First, we show that the multiplicative gap between the
achievable rate in [26] for multicast coded caching and the
achievable rate in Theorem 1 can be bounded by a constant.
We recall the upper and lower bounds from [26].

RMulticast � K (N + M − 1)

N + (K + 1)(M − 1)
, (47)

R∗Multicast ≥ max
s∈{1,2,...,min(K ,N/2)}

(s�N/s�−1)−(s−1)M

(�N/s�−1)
. (48)

Therefore, we have

RC
T

RMulticast
= 2(N+(K+1)(M−1))

1+(M−1)K+√
(1−(M−1)K )2 − 4K N

. (49)

To simplify the notation, let U = M − 1 and V =√
(1− K U)2 − 4K N . Then, we have

RC
T

RMulticast
= 2K U

1+K U+V
+ 2U

1+K U+V
+2

N

1+K U+V
, (50)

≤ 2+ 1+ 2
N

1+ K U + V
. (51)

Note that the minimum value of M = N
K−1 + 2, thus we have

U ≥ N
K−1 and

RC
T

RMulticast
≤ 3+ 2

N

1+ K N
K−1 + V

≤ 5 = c′. (52)

Now, consider

RC
T

R∗T
= RC

T

RMulticast
× RMulticast

R∗T
≤ RC

T

RMulticast
× RMulticast

R∗Multicast
, (53)

≤ c′ × c′′ = c. (54)

We observe that for any value for s, the RHS of (45) equals
K

K−s RHS of (48), thus we have R∗Multicast ≤ R∗T and we can
get we get (53). The last step follows from [26, Theorem 3],
i.e., RMulticast

R∗Multicast
≤ c′′, where c′′ is a constant independent of the

system parameters.
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