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Abstract—We consider a two-source two-destination two-hop
relay network, where all data communication must be kept
secret from the relay node. The model considered is the sim-
plest primitive that embodies a multi-transmitter multi-receiver
network that needs to communicate sharing an untrusted relay
node. We focus on two scenarios. In the first scenario, each
source aims to send two messages to be kept secret from the
relay: a common message that should be decoded by both
destinations, and a private message that should be decoded by
the first destination while kept secret from the second one. We
define an achievable rate region by utilizing stochastic encoding
at the sources, Gaussian noise cooperative jamming from the

destinations, and compress-and-forward at the relay. In the
second scenario, each source aims to send a confidential message
to its intended destination which should be kept secret from the
other one as well as the relay. We define an achievable rate
region using a combination of nested lattice codes and random
binning at the sources, structured cooperative jamming from
destinations and scaled compute-and-forward at the relay. We
also derive genie-aided outer bounds on the secrecy rate regions.
We present numerical results that demonstrate the performance
of the proposed achievable schemes. Overall, the work provides
insights into how to utilize an untrusted relay to communicate to
destinations with different levels of security clearance, and how
intentional interference is an enabler of communication.

Index Terms—Untrusted relays, two-hop communications, co-
operative jamming, levels of security clearance.

I. INTRODUCTION

Wireless ad-hoc networks offer an efficient solution to

provide or enhance wireless coverage and are instrumental

in realizing the soon to arrive Internet of Things era. In

such networks, nodes act as relays for assisting others in

their communication. As such, they are expected to obey the

network protocols. At the same time, nodes can join and leave

frequently and may not be fully vetted for confidentiality

of data. This calls for a system design where information

transmitted by the node is kept secret from relay nodes despite

the cooperative nature of communications. In particular, the

transmitted information should not be obtained by any node

except the legitimate end users. The intermediate relay node

in such a scenario is called an untrusted-relay [1]. From an

information theoretic security point of view, this lack of trust

is captured by considering an eavesdropper associated with the
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relay node that has a channel output that is identical to the one

received by the relay [1], [2].

Cooperation with an untrusted-relay has been proven to

be beneficial [1]. In reference [1], a single-source single-

destination untrusted relay network has been investigated, and

scenarios have been identified in which using compress-and-

forward as a relaying strategy, an untrusted relay can improve

the achievable secrecy rate. Untrusted relay models have also

been studied when a relay node is the enabler of commu-

nication, i.e., the two-hop scenario without a direct link [3].

Reference [3] has shown that a positive secrecy rate is possible

with the aid of cooperative jamming from the destination. In

the case of a single-source single-destination multi-hop net-

work, e.g., a line network, performing compress-and-forward

at the relays results in accumulation of the quantization noise

over the hops, which decreases the achievable end-to-end

secrecy rate as the number of hops increases. Reference [4]

provides an alternative achievable scheme using compute-and-

forward relaying and structured signaling by nested lattice

codes that yields a constant secrecy end-to-end communication

rate irrespective of the number of hops, i.e., the number of

intermediate untrusted relays. Additional work utilizing un-

trusted relays in single-source single-destination and multiple-

source single-destination networks include references [5]–[9],

and [10] respectively.

In this paper, we propose to utilize untrusted relays to

assist in multi-terminal, i.e., multi-source, multi-destination

communications; specifically, in designing wireless ad-hoc

networks with various hierarchical security clearances. We

consider the simplest model that embodies this notion: a two-

source two-destination two-hop network utilizing an untrusted

relay, under two different scenarios. In the first scenario,

each source transmits two independent messages that should

be kept secret from the untrusted relay. Furthermore, one

of them, the common message, should be decoded by both

destinations, while the other message should be decoded by

the first destination and be kept secret from the other one.

Thus, under this scenario, the first destination has higher

level of security clearance compared to the second one. We

define an achievable secrecy rate region, using stochastic

encoding at the sources, compress-and-forward at the relay,

and cooperative jamming by the destinations. All nodes, under

this scenario, transmit Gaussian signals. Moreover, we derive

genie-aided outer bounds on the secrecy rate region using

the relay/eavesdropper separation technique [3]. It is worth

mentioning that receivers with different levels of security

clearance was considered in reference [11], which studied a

three-user broadcast channel with three degraded message sets.
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In particular, the transmitter sends a common message that

should be decoded by the three receivers, a secure message that

should only be decoded by the first and the second receivers,

and a private message that should only be decoded by the first

receiver. This reference, however, studied a one-hop setup, and

no untrusted relays, whereas our focus is on two-hop networks

and the crucial role of the untrusted relay as an enabler of

communication.

In the second scenario, we consider the case where each

source aims to communicate a message to its intended desti-

nation. This message should be kept secret from the untrusted

relay as well as the unintended destination. This scenario

represents two-hop multi-terminal communication with con-

fidential messages. We define a secrecy achievable rate region

using a combination of stochastic encoding and lattice coding

at the sources, scaled compute-and-forward at the relay [12]

[13], and cooperative jamming from the destinations. In par-

ticular, the sources and destinations signal from nested lattice

codebooks. The relay decodes two different integer combi-

nations from the received four lattice points such that it can

obtain two combinations, each of which represents the lattice

points transmitted by a source-destination pair. Using Gaussian

codebooks, the relay forwards these two combinations to both

destinations.

Some of the material in this paper was presented in part

in conference papers [14] and [15]. Section III of this paper

generalizes the model and the analysis of [14]. In [14], the

secrecy analysis is limited to the case where the user with

higher level of security clearance contributes higher jamming

power; this assumption is no longer needed in the generalized

treatment we provide. Furthermore, here, we derive the outer

bounds for the sum of common and private rates utilizing

the decodability constraint at the user with higher security

clearance. Section IV extends and improves upon the setting

considered in [15], specifically by optimization of the MMSE

and successive cancellation coefficients of the scaled compute-

and-forward. This manuscript also provides detailed proofs

as well as comprehensive numerical results that were not

presented in the conference papers.

The remainder of the paper is organized as follows. Section

II describes the system model. In Section III, we study the

first scenario, where the destinations have different levels of

security clearance. In Section IV, we investigate the second

scenario, i.e., the two-hop interference network with confiden-

tial messages. Numerical results that show the performance of

the achievability techniques are provided in Section V. Finally,

Section VI summarizes our conclusions.

II. SYSTEM MODEL

Consider a two-source two-destination two-hop relay net-

work depicted in Fig. 1. The sources, S1 and S2, have messages

for destinations, D1 and D2. Assuming a sufficiently distance

between the sources and destinations, we assume no direct link

between them. Therefore, the relay node, which is untrusted,

i.e., honest-but-curious, is the only enabler of communica-

tions between the sources and the destinations. Each node

is equipped with a single antenna and cannot receive and

transmit simultaneously, i.e., operates in a half-duplex mode.

Fig. 1: The two-hop, two-source, two-destination network with an
untrusted-relay.

The communication alternates between two phases. In the

first phase, which occurs over l channel uses, the sources

transmit their signals, X1 and X2, to the relay, while the

destinations provide cooperative jamming with signals, J1 and

J2. Therefore, at channel use i, the received signal by the

untrusted relay is given by

Yr (i) =
2∑

k=1

[
√

hkXk(i) +
√
gk Jk (i)] + Zr (i), (1)

where Zr is zero-mean Gaussian noise with unit variance and√
hk (

√
gk) is the channel gain between Sk (Dk) and the relay.

During the second phase, which occurs over m channel uses,

the relay transmits its signal, Xr , to both destinations, D1 and

D2. The received signal by Dk , at channel use j, is given by

Yk( j) = √
gkXr ( j) + Zk( j), (2)

where Zk is the zero-mean Gaussian noise with unit variance.

The transmitted signals from Sk , the relay and Dk must

satisfy the following average power constraints

1

n

n∑

i=1

E[X2
k(i)] ≤ P̄k k ∈ {1, 2, r}, (3)

1

n

n∑

i=1

E[J2
k (i)] ≤ P̄Jk k ∈ {1, 2}, (4)

where n = l + m is the total number of channel uses.

Since, each node transmits over only one of the two phases,

the transmitted signals are subject to effective average power

constraints given by

Pmax
r =

P̄r

1 − η, Pmax
k =

P̄k

η
, Pmax

Jk =
P̄Jk

η
, (5)

where η = l
n

is the time sharing factor of the first phase.

In the remainder of this paper, we use the notation Yn
=

{Y (1),Y (2), · · · ,Y (n)}, C(x) , 0.5 log2(1 + x) and [x]+ ,
max(0, x).

Remark 1. It worth noting that the model under investigation

is equivalent to the one where two external jammers jam the

relay during the first phase, and the cooperative jamming

signal of each of them is conveyed to one of the destinations,

which remains silent, over a noiseless link. Therefore, we can

consider the received signal at Dk over the n channel uses to

be Yn
k
= {Jl

k
,Ym

k
}.



1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2695163, IEEE
Transactions on Information Forensics and Security

3

Fig. 2: Senario I: Users with different levels of security clearance.

We consider two scenarios of this model where the sources

wish to communicate securely to the destinations, keeping

these messages secret from the relay.

A. Scenario I: Users with different levels of security clearance

In the first scenario, we utilize the untrusted relay to serve

end users (legitimate receivers) with different levels of security

clearance. In particular, we consider a scenario where Sk
transmits two independent messages:

• A common message, Ws
k
, with rate Rs

k
, which should be

decoded by both destinations, D1 and D2, and be kept

secret from the untrusted relay.

• A private message, W
p

k
, with rate R

p

k
, that should be

decoded by D1 only and be kept secret from both the

untrusted relay and D2.

This setup, illustrated in Fig. 2, models a legitimate receiver,

D1, which has higher security clearance compared to the other

legitimate receiver, D2. Applications of such a setup include

variety of ad-hoc network scenarios, e.g., healthcare moni-

toring networks, as well as tactical networks with command

hierarchy. The above secrecy requirements are captured by the

following constraints:

1

n
H(S|Yn

r ) ≥
1

n
H(S) − ǫ ∀S ⊆ Wps, (6)

1

n
H(S|Yn

2 ) ≥
1

n
H(S) − ǫ ∀S ⊆ Wp, (7)

where Wps
= {Ws

1
,Ws

2
,W

p

1
,W

p

2
} and Wp

= {Wp

1
,W

p

2
}.

B. Scenario II: Confidential messages to both users

In the second scenario, we consider the case where S1

aims to send a confidential message W1, with rate R1, that

should be decoded only by D1 and be kept secret from D2

as well as the untrusted relay. Similarly, S2 aims to send a

confidential message W2, with rate R2, that should be decoded

only by D2 and be kept secret from D1 as well as the untrusted

relay, as illustrated in Fig. 3. Therefore, we define the secrecy

constraints at the unintended destinations and the untrusted

relay as follows.

1

n
H(W2 |Yn

1 ,W1, J
n
1 ) ≥

1

n
H(W2) − ǫ, . (8)

1

n
H(W1 |Yn

2 ,W2, J
n
2 ) ≥

1

n
H(W1) − ǫ, (9)

1

n
H(Wj |Yn

r ,Wk) ≥
1

n
H(Wj ) − ǫ j, k = 1, 2; j , k. (10)

Fig. 3: Scenario II: Interference channel with confidential messages.

Remark 2. The secrecy constraints in (10) ensure that

limn→∞
1
n

I(W1,W2;Yn
r ) = 0, since

I(W1,W2;Yn
r ) = I(W1;Yn

r ) + I(W2;Yn
r |W1) (11)

= H(W1) − H(W1 |Yn
r ) + I(W2;Yn

r |W1) (12)

≤ H(W1 |W2) − H(W1 |W2,Y
n
r ) + I(W2;Yn

r |W1) (13)

= I(W1;Yn
r |W2) + I(W2;Yn

r |W1). (14)

(13) follows from the independence between W1 and W2, and

the fact that conditioning cannot increase the entropy.

In the following, we study these scenarios, provide achiev-

able secure rate regions and outer bounds.

III. SCENARIO I: SERVING USERS WITH DIFFERENT

LEVELS OF SECURITY CLEARANCE

Here, we define an achievable secrecy rate region for

the considered scenario in Fig. 2. The achievability tech-

nique combines stochastic encoding at the sources [16], and

compress-and-forward [17], at the relay with the help of

cooperative jamming [18] from both destinations.

A. At the sources

Define 0 ≤ αk ≤ 1 and ᾱk = 1 − αk, k = 1, 2. Sk generates

2l(R
s
k
+Rx1

k
) codewords, Ul

k
, drawn from N(0, ᾱkPk), where

0 ≤ Pk ≤ Pmax
k

, and distributes them over 2lR
s
k bins, each of

them is indexed by one of Ws
k
’s and contains 2lR

x1
k codewords.

Next, Sk generates 2l(R
p

k
+Rx2

k
) codewords, V l

k
, drawn from

N(0, αkPk) and distributes them over 2lR
p

k bins, each of them

is indexed by one of the W
p

k
’s and contains 2lR

x2
k codewords.

The randomization rate Rx1
k

determines the bin size of the

codebook of the common secure message which is designed

to confuse the untrusted relay, while Rx2
k

determines the bin

size of the codebook of the private message which is chosen

to confuse both the untrusted relay and D2. The values of Rx1
k

and Rx2
k

will be specified later.

Finally, to send a pair (Ws
k
,W

p

k
), Sk chooses uniformly ran-

dom codewords from the bins indexed by Ws
k

and W
p

k
, then

transmits the sum of these two signals X l
k
= Ul

k
+ V l

k
.

Simultaneously, Dk transmits cooperative jamming signals

in the form of zero-mean Gaussian noise with variance PJk ,

where 0 ≤ PJk ≤ Pmax
Jk

.

B. At the relay

The relay compresses its received signal Y l
r into a quantized

version Ŷ l
r and transmits the corresponding signal Xm

r . The

elements of Xm
r are drawn from N(0, Pr ), where 0 ≤ Pr ≤
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Fig. 4: Building blocks of the achievability scheme for scenario I.

Pmax
r . The scheme idea is summarized in Fig. 4. Now, we

state the achievable secrecy rate region of this setup.

Theorem 1. The secrecy rates that satisfy the following

inequalities are achievable

Rs
k
≤ η

[

min
q∈{1,2}

{

C

(
ᾱkhkPk

1+gqPJq+α1h1P1+α2h2P2+σ
2
Q

) }

− C

(
ᾱkhkPk

1 + g1PJ1 + g2PJ2 + h jPj + αkhkPk

) ]
+

, (15)

Rs
1+Rs

2 ≤η
[

min
q∈{1,2}

{

C

(
ᾱ1h1P1+ᾱ2h2P2

1+gqPJq+α1h1P1+α2h2P2+σ
2
Q

) }

,

− C

(
ᾱ1h1P1+ᾱ2h2P2

1+g1PJ1+g2PJ2+α1h1P1+α2h2P2

) ]
+

, (16)

R
p

k
+Rs

k
≤ η

[
C

(
hkPk

1+g2PJ2+σ
2
Q

)

−C

(
hkPk

1+g1PJ1+g2PJ2+h jPj

)]
+

,

(17)

R
p

k
≤η

[

C

(
αkhkPk

1+g2PJ2+σ
2
Q

)

−C

(
αkhkPk

1+g1PJ1+αjh jPj+σ
2
Q

)]
+

,

(18)

R
p

1
+R

p

2
≤η

[
C

(
α1h1P1+α2h2P2

1+g2PJ2+σ
2
Q

)

−C

(
α1h1P1+α2h2P2

1+g1PJ1+σ
2
Q

)]
+

,

(19)

2∑

i=1

R
p

i
+Rs

i ≤η
[
C

(
h2P2+h1P1

1+g2PJ2+σ
2
Q

)

−C

(
h2P2+h1P1

1+g1PJ1+g2PJ2

)]
+

,

(20)

where k, j ∈ {1, 2}, k , j, and ∀η, σ2
Q

is the quantization

noise variance which is determined such that

ηC

(
h1P1+h2P2+gqPJq+1

σ2
Q

)

≤ (1− η)C(gkPr ), k, q=1, 2; k,q.

(21)

Proof. The reliability part is based on the achievability proof

of the multiple-access relay channel [19, Section 3.2] [20, Sec-

tion III-B3] and the detailed analysis is provided in Appendix

A. �

C. Discussion

In this achievability technique, all network nodes use Gaus-

sian signaling. In particular, the sources and relay signals

are drawn from Gaussian codebooks, while the destinations

cooperatively jam with Gaussian noise. It is worth noting that

if we deactivate the second destination, i.e., PJ2 = 0, and set

the rates of the common messages to zero, the network reduces

to a two-user multiple access untrusted-relay channel and the

private rate region is equivalent to the one in [10] for K = 2.

1) Power control policies: The achievable rates increase

with the increase in the time sharing factor η. In order to

increase η, the relay should always transmit with its maximum

power, Pmax
r . Also, observe that as the relay power becomes

large, quatization noise variance becomes negligible, i.e., when

Pr → ∞, the optimal η → 1 and the quantization noise

variance σ2
Q

→ 0. Also, it is easy to see that the power

used for cooperative jamming, i.e., the intentional interference

to impose security, plays a key role in obtaining non-zero

secrecy rates. In particular, to have non-zero secure common

rates, we need min(g1PJ1, g2PJ2) > σ2
Q

. On the other hand,

to have non-zero confidential rates, we need g1PJ1 > σ
2
Q

and g1PJ1 > g2PJ2. Generally, the achievable rates are not

increasing functions in the transmitting powers, as for any

fixed cooperative jamming power allocations, the secrecy rates

go to zero as the transmit powers, P1 and P2 go to ∞.

Therefore, the optimal power at source k may be less than

Pmax
k

, k = 1, 2.

2) Cooperative jamming strategies: Suppose that the ob-

jective of the two destinations is to maximize the rates of

the common messages. Then, D1 and D2 should adjust their

cooperative jamming powers such that g1PJ1 = g2PJ2. It is

evident from (16) that the common rate is governed by the

term min(g1PJ1, g2PJ2). On the other hand, we can observe

that the right hand side of (19) increases with increase in

PJ1 and decrease in PJ2. Thus, to maximize the private sum

rate, D1 would jam with its maximum power and D2 would

reduce its cooperative jamming power. We illustrate these two

observations via numerical results in Section V.

The previous observation gives the insight that if D2 is

replaced by an adversary jammer that has an objective to

reduce the secure rate of the legitimate receiver, i.e., D1, it can

achieve its goal without a necessity of having a direct link to

D1, i.e., even it is not able to jam D1 during the second phase.

It is sufficient for this adversary jammer to jam the relay with

its maximum power during the first phase.

D. Outer bounds

In this subsection, we derive genie aided outer bounds on

the secrecy rates. We modify the relay/eavesdropper separation

technique proposed in [3] as follows. First, we insert an

external eavesdropper, E , whose channel statistics are the same

as the one associated with the relay node. In particular, the

received signal at this external eavesdropper, at channel use i,

is given by

Ye(i) =
√

h1X1(i)+
√

h2X2(i)+
√
g1J1(i)+

√
g2J2(i)+Ze(i), (22)

where Ze is a zero-mean Gaussian noise with unit variance

correlated with Zr with correlation coefficient ρ. Since the

external eavesdropper’s observation is statistically equivalent

to the one at the relay, ensuring the secrecy of the messages at

this external eavesdropper, guarantees that these messages are

also kept secret from the untrusted relay. Second, we remove
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Fig. 5: An equivalent network used to calculate the outer bound.

the eavesdropper associated with the relay node, i.e., consider

the relay to be trusted as illustrated in Fig. 5. Moreover, we

assume that Xr is conveyed to both destinations as genie

information. Lastly, we consider that one of the cooperative

jamming signals, J1, J2, is given to the relay by a genie. The

cooperative jamming signal given to the relay depends on

the type of rates that we calculate the outer bound on.To

derive the upper bounds on the common rates, we consider

a genie transfers the cooperative jamming signal Jl
2

to the

relay, where the relay is now trusted after the aforementioned

transformation, and then we utilize the secrecy constraint at

E and the reliability constraint at D2. On the other hand, to

derive the upper bounds for the common and private rates,

we consider a genie that provides cooperative jamming signal

Jl
1

to the relay, and we use the secrecy constraint at E and

the reliability constraint at D1. Note that, in deriving these

upper bounds, we ignore the secrecy constraints on the private

messages at D2, and this action cannot decrease the secrecy

rates for the private messages.

Theorem 2. The secure rate region for the model under

Scenario I is upper bounded by

Rs
k
≤ max

η∈(0,1]
min

−1≤ρ≤1
min

{
η

2
log2(Ak), (1−η)min

k
C(gkPr )

}
, (23)

Rs
1+Rs

2 ≤ max
η∈(0,1]

min
−1≤ρ≤1

min

{
η

2
log2 A, (1−η)min

k
C(gkPr )

}
, (24)

R
p

k
+Rs

k ≤ max
η∈(0,1]

min
−1≤ρ≤1

min
{η
2

log2(Bk), (1−η)C(g1Pr )
}
, (25)

R
p

1
+ R

p

2
+ Rs

1 + Rs
2 ≤

max
η∈(0,1]

min
−1≤ρ≤1

min
{
0.5η log2(B), (1 − η)C(g1Pr )

}
, (26)

where

Ak =
[(1 + Ot )(1 +Ok

ts) − (Ok
ts + ρ)2](O

j
ts + 1)

[(1 +O
j
ts)(g1PJ1 + 1) − (g2PJ1 + ρ)2](1 +Ot )

, (27)

A=
[(1+Ot)(1+Ot−g2PJ2)−(Ot−g2PJ2+ρ)2](g1PJ1+1)

[(1+g1PJ1)2−(g1PJ1+ρ)2](1+Ot)
, (28)

Bk =

[(1 +Ot )(1 + Ok
tp) − (Ok

tp + ρ)2](O
j
t p + 1)

[(1 +O
j
t p)(g2PJ2 + 1) − (g2PJ2 + ρ)2](1 + Ot )

, (29)

B=
[(1+Ot)(1+Ot−g1PJ1)−(Ot−g1PJ1+ρ)2](g2PJ2+1)

[(1+g2PJ2)2−(g2PJ2+ρ)2](1+Ot)
,

(30)

Ot = h1P1 + h2P2 + g1PJ1 + g2PJ2, Ok
tp = hkPk + g2PJ2,

Ok
ts = hkPk + g1PJ1 and k, j = 1, 2, k , j.

Proof. The derivation is detailed in Appendix B. �

Remark 3. Suppose that we focus only maximizing the private

rates, i.e., we choose α1 = α2 = 1 and PJ2 = 0. Also, consider

the case where P̄r → ∞, i.e., σ2
Q
= 0 and η = 1. When the

source transmit power goes to ∞, the gap between the upper

bound on the private sum rate and the achievable private sum

rate converges to

C

(
g1PJ1 + (ρ∗ − 1)2

1 − ρ∗2

)
− C(g1PJ1), (31)

where ρ∗ is given by

ρ∗ = 1 + g1PJ1 −

√

g1PJ1 +
(g1PJ1)2

4
. (32)

This gap is a function of the jamming power PJ1 only. As PJ1

goes to ∞, the upper bounds are asymptotically tight.

IV. SCENARIO II: SENDING CONFIDENTIAL MESSAGES VIA

AN UNTRUSTED RELAY

In this section, we focus on the second scenario illustrated

in Fig. 3. From the results we obtained in the previous

section for Scenario I, we readily observe that the destination

which contributes more in cooperative jamming, is the one

who ensures confidentiality of its messages from the other

destination. This is evident from the condition of non-zero

private rates in subsection III-C1. Therefore, under Scenario

II, utilizing the previous scheme, with Gaussian signaling, will

only allow one destination, D1, to keep its message secret from

the other destination and it is not possible to achieve secure

positive rate for both destinations simultaneously. The same

conclusion can be obtained if the relay employs amplify-and-

forward under the same signaling scheme. These observations

motivate us to consider structured signaling, under Scenario II,

in order to achieve positive secure rates for both users, simul-

taneously. In particular, the sources and destinations transmit

from nested lattice codebooks while the relay performs scaled

compute-and-forward [12], [13]. In the following, we detail

the achievability scheme.

A. The first phase

At each source, we use a nested lattice codebook as an inner

code, and random binning as an outer code, similar to [4]. We

start with the illustration of the inner code that is motivated

by scaled compute-and-forward [12], [13].

Let us first set up the notation related to lattice codes. A

lattice Λ is a discrete group of RN such that: if tN
1
, tN

2
∈ Λ,

then tN
1
+ tN

2
∈ Λ. The lattice quantizer, QΛ : RN → Λ, is

defined as

QΛ(xN ) = arg min
tN ∈Λ

| |tN − xN | |, (33)

where | |tN − xN | | is the Euclidean distance between tN and

xN . The quantization error is given by the modulo operation

defined as

xN mod Λ = xN − arg min
tN ∈Λ

| |tN − xN | |. (34)
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The fundamental Voronoi region of Λ is defined to be

V(Λ) = {xN : QΛ(xN ) = 0}, (35)

where 0 is all-zero vector with length N . Λ and Λk are nested

lattices if Λk ⊆ Λ, where Λ is the coarse lattice, and Λk is

the fine lattice. Let βk be a non-zero real number and β =

[β1, .., β4]T . Lattices Λk ⊆ Λ for k = 1, .., 4, are constructed

such that for Λk , we have

1

NVol(V(Λk))

∫

V(Λk )
| |xN | |2dx = β2

kP. (36)

1) Encoding at the sources and destinations: Sk generates

its codebook Ck = Λ ∩V(Λk) with rate given by

Rc
k
=

1

N
log2 |Ck | =

1

N
log2

Vol(V(Λk))
Vol(V(Λ)) . (37)

For simplicity of analysis, we assume without loss of gener-

ality that P̄k = P̄Jk = P, k = 1, 2. Each source-destination

pair uses the same nested lattice codebook, i.e., D1 uses

the codebook C1, D2 uses the codebook C2, and the scaling

factors are β1 = β3 and β2 = β4. Each source-destination pair

implements power control, so that we can assume h1 = g1 and

h2 = g2, during the first phase of communication.

Sk applies stochastic encoding. More specifically, Sk divides

the codewords of Ck into 2NRk bins, each of which is indexed

by the corresponding Wk . The size of these bins are chosen to

ensure the secrecy of the message Wk at the untrusted relay

as we will see in appendix C. To send a message Wk , Sk
randomly picks a point tN

k
from the bin indexed by Wk and

transmits the corresponding signal XN
k

which is given by

XN
k
= (tN

k
/βk + dN

k
) mod Λk/βk, (38)

where dN
k

is a dither vector that is uniformly distributed over

the scaled Voronoi region V(Λk)/βk , and it is assumed to be

known at all network nodes.

Meanwhile, Dk randomly chooses tN
k+2

∈ Ck , and transmits

the corresponding signal JN
k

as

JN
k
= (tN

k+2/βk + dN
k+2) mod Λk/βk . (39)

2) Decoding at the relay: We require the relay to decode

two different integer combinations of the received lattice

points, whose coefficients are given by a = [a1, .., a4]T and

b = [b1, .., b4]T . We select a, b from the set {[1, 0, 1, 0]T ,

![0, 1, 0, 1]T , [1, 1, 1, 1]T } and a,b. Observe that these combi-

nations always satisfy a1=a3, a2=a4, b1=b3 and b2=b4.

To decode the first integer combination, the relay forms the

following signal

ȳ
N
1 = α1Y

N
r −

4∑

k=1

akβkdN
k
=

2∑

k=1

[(α1hk − akβk )(XN
k
+ JN

k
)]

+ α1ZN
r +

2∑

k=1

ak βk(XN
k
+ JN

k
) −

4∑

k=1

ak βkdN
k
, (40)

where α1 is some real number. To simplify the notation, we

define z̄N
1
=

∑2
k=1[(α1hk −ak βk)(XN

k
+ JN

k
)]+α1ZN

r . Now, we

can express (40) as follows.

ȳ
N
1 = z̄N1 +

2∑

k=1

ak βk(XN
k
+ JN

k
) −

4∑

k=1

ak βkdN
k

(41)

=

4∑

k=1

ak(βk (tNk /βk+dN
k
)−βkQΛk /βk (tNk /βk+dN

k
))

+ z̄N1 −
4∑

k=1

akβkdN
k (42)

= z̄N1 +

4∑

k=1

ak(tNk − QΛk
(tN
k
+ βkdN

k
)) = z̄N1 +

4∑

k=1

ak t̄N
k
, (43)

where t̄N
k
= tN

k
− QΛk

(tN
k
+ βkdN

k
). The relay is able to

decode the integer combination
∑4

k=1 ak t̄N
k

that lies in the

coarse lattice Λ by considering z̄N
1

as noise. Note that z̄N
1

and
∑4

k=1 ak t̄N
k

are independent, as the signals tN
k

and XN
k

are

independent due to the nature of the dither vectors. Hence, the

achievable rate for the first combination is given by

Rk1 ≤ max

(

max
α1

0.5 log2

β2
k
P

N1(α1)
, 0

)

, (44)

where N1(α1) is the variance of z̄N
1

which is given by

N1(α1) = 2

2∑

k=1

(α1hk − ak βk)2P + α2
1 . (45)

The maximization of the rate in (44) is equivalent to minimiz-

ing N1 over α1, which results in the following value of N1

N1(α∗1) = | |â| |2P − P2(hT â)2
1 + P | |h| |2

, (46)

where h = [h1, h2, h1, h2]T and â = [β1a1, .., β4a4]T . Using

the decoded combination
∑4

k=1 ak t̄N
k

, the relay performs suc-

cessive cancellation and forms the following signal to decode

the second integer combination

ȳ
N
2 = α2YN

r −
4∑

k=1

bkβkdN
k

− λ(
4∑

k=1

ak t̄N
k
+

4∑

k=1

akβkdN
k
) (47)

=

2∑

k=1

[α2hk − (λak + bk)βk ](XN
k
+ JN

k
) + α2ZN

r

+

4∑

k=1

bk t̄Nk = z̄N2 +

4∑

k=1

bk t̄Nk , (48)

where α2 and λ are some real numbers, and z̄N
2
=

∑2
k=1[α2hk−

(λak + bk)βk](XN
k
+ JN

k
)+α2ZN

r is the equivalent noise while

decoding the integer combination
∑4

k=1 bk t̄N
k

. Thus, we obtain

the following rate for decoding the second integer combination

Rk2 |a ≤ max

(

max
α2,λ

0.5 log2

β2
k
P

N2(α2, λ)
, 0

)

, (49)

where N2(α2, λ) is the variance of z̄N
2

which is given by

N2(α2, λ) =
4∑

k=1

(α2hk − (λak + bk)βk)2P + α2
2 . (50)
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Fig. 6: Building blocks of the achievability scheme for scenario II.

The maximum rate in (49) is attained when N2 is given by

N2(α∗2, λ
∗) = b̂T b̂P − 0.25qTAq, (51)

where b̂ = [β1b1, .., β4b4]T , qT =
[
−2hT b̂P 2b̂T b̂P

]
, and

A =

[
1 + hThP −hT âP

−hT âP âT âP

]
. The details of optimizing over

α1, α2 and λ are provided in appendix D.

The achievable transmission rate of t̄N
k

is restricted by

the rates of combinations that have a non-zero coefficient of

t̄N
k

[13]. Therefore, we have the following conditions on the

achievable transmission rates of t̄N
1

and t̄N
2

.

R1
1 ≤





R11 if a1 = 1 and b1 = 0,

R12 |a if a1 = 0 and b1 = 1,

min(R11, R12 |a) if a1 = 1 and b1 = 1,

(52)

R1
2 ≤





R21 if a2 = 1 and b2 = 0,

R22 |a if a2 = 0 and b2 = 1,

min(R21, R22 |a) if a2 = 1 and b2 = 1.

(53)

B. The second phase

1) Encoding at the relay: After decoding of the two integer

combinations
∑4

k=1 ak t̄N
k

and
∑4

k=1 bk t̄N
k

successfully, the relay

has t̄N
1
+ t̄N

3
and t̄N

2
+ t̄N

4
that will be transmitted to both

destinations during the second phase. The relay encodes each

of them into a Gaussian codeword and forwards them to the

destinations. More specifically, the linear integer combination

t̄N
1
+ t̄N

3
is encoded into a codeword Xm

r1
from a Gaussian

codebook randomly generated according to N(0, ζ1Pr ), and the

linear integer combination t̄N
2
+ t̄N

4
is encoded into a codeword

Xm
r2

from a Gaussian codebook randomly generated according

to N(0, ζ2Pr ), where ζ1 + ζ2 ∈ [0, 1] and ζ1, ζ2 ≥ 0. Finally,

the relay transmits the signal Xm
r = Xm

r1
+ Xm

r2
.

2) Decoding at destinations: The channel from the relay to

the destinations is a two-user broadcast channel. The weaker

destination (i), i.e., gi ≤ gj, i, j ∈ {1, 2}, decodes its desired

signal Xm
ri

by treating Xm
rj

as noise. The stronger destination

( j), decodes Xm
ri

first and then does successive cancellation

and decodes Xm
r j

. The achievable rate region during the second

phase is thus given by

R2
i ≤ C

(
ζigiPr

1 + ζjgiPr

)
, R2

j ≤ C(ζjgjPr ). (54)

Note that there is one-to-one mapping between t̄N
k

and tN
k

given the knowledge of the dither vectors dN
k

[13]. Therefore,

with the knowledge of its cooperative jamming signal and the

received combination, Dk is able to decode it desired message.

The scheme idea is summarized in Fig. 6.

Consequently, we can state the following theorem that rep-

resents the achievable rate region under the second scenario.

Theorem 3. The following secrecy rate region is achievable

for two-user two-hop interference untrusted-relay channel with

confidential messages

max
β,η,a,b,ζ1,ζ2

{
R1 ≤ min(η[R1

1 − 1]+, (1 − η)R2
1),

R2 ≤ min(η[R1
2 − 1]+, (1 − η)R2

2)
}
. (55)

The proof of this theorem is completed in Appendix C.

C. Discussion

First, observe that the above achievability technique utilizes

both structured and Gaussian signaling. In particular, the

sources and destinations use nested lattice codebooks for

sending the confidential messages and cooperative jamming,

respectively, while the relay transmits using Gaussian code-

books. We prefer to forward using Gaussian codebooks during

the second phase as they are known to achieve the capacity

of the two-user Gaussian broadcast channel.

The secrecy constraints at the relay node result in the loss

of 1 bit/channel use from the achievable transmission rate

R1
k
. This 1 represents the bin size of the outer code required

to guarantee the secrecy of the confidential messages at the

untrusted relay as proven in appendix C-A. Therefore, our

achievable scheme incurs a η bits channel loss as compared

to when the relay is trusted, and this secrecy cost becomes

negligible in high SN R.

It is worth noting that this achievable scheme ensures the

secrecy of the confidential messages from any external eaves-

dropper that overhears the relay’s signal during the second

phase, as evident from the analysis in Appendix C. This

observation illustrates how our scheme utilizes the untrusted

relay as an encryption block.

We conclude this discussion section with two remarks.

Remark 4. The achievability scheme can be extended to

K-source K-destination two-hop interference untrusted-relay

channel with confidential messages, where K > 2. The trans-

mitted signals from the sources and destinations follow the

same procedure. However, the relay is required to decode K

different integer combinations of the received lattice points

by performing noise prediction as in [13]. The coefficients of

these combinations are chosen such that lattice points from

a transmitter-receiver pair always the same. After that the

second phase is equivalent to a K-user broadcast channel.

Remark 5. In developing the outer bounds in subsection

III-D, we only considered the eavesdropper associated with

the relay node. It is worth mentioning that this outer bound

is applicable for the scenario considered in Section IV, as

removing the eavesdroppers associated with the destinations

cannot reduce the secrecy rate. Also, note that any outer bound

that is obtained on 1
n

H(Wk |Yn
r ) is also an outer bound on

1
n

H(Wk |Yn
r ,Wj ) as conditioning cannot increase the entropy.
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Fig. 7: Scenario I: Private sum rate vs transmit power when Pr → ∞,
PJ1 = P1, PJ2 = 15 dB, h1 = h2 = g1 = g2 = 1 and optimal η.
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Fig. 8: Scenario I: Common sum rate vs transmit power when Pr →
∞, PJ1 = 11 dB, PJ2 = 10 dB, h1= h2=g1=g2 = 1 and optimal η.

V. NUMERICAL RESULTS

In this section, we present numerical results that demon-

strate the performance of the proposed schemes presented in

Sections III and IV.

A. Scenario I

From Fig. 7, we observe that when Pr → ∞, and the cooper-

ative jamming power of D1 is proportional to the transmitting

power, i.e., PJ1 ∝ P1 + P2 while the cooperative jamming

power of D2 is fixed, the private sum rate is an increasing

function in the transmitting powers. The gap between the outer

bound and the achievable rate decreases with the increase of

the fraction of transmitting power assigned for the private

messages. In Fig. 8, we plot the achievable common sum

rate for different fraction of power allocations at the sources

and the outer bound for the case where cooperative jamming

powers of D1 and D2 are fixed. We note that for the cases

where αk = 0.5, 0.1, the achievable common rate is not

monotonically increasing in the source powers. The reason

behind this is that after a certain power level the interference

due to the private messages signals, at D2, significantly,

decreases the achievable rates. From Fig. 9, we note that

when the cooperative jamming powers are fixed, the private

sum rate increases in the transmit power until it saturates. In
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Fig. 9: Scenario I: Private sum rate vs transmit power when Pr → ∞,
PJ1 = 20 dB, PJ2 = 10 dB, h1 = h2 = g1 = g2 = 1 and optimal η.
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Fig. 10: Scenario I: Private sum rate vs transmit power when Pr = 25
dB, PJ1 = 20 dB, PJ2 = 10 dB, h1 = h2 = g1 = g2 = 1 and η = 0.5.

this high power region, both the destinations and eavesdropper

associated with the relay node have high signal-to-noise ratios.

For the case where the relay and cooperative jamming

powers are limited, as in Fig. 10, we observe that the

achievable private sum rates are not monotonically increasing

with the sources’ transmit powers, see subsection III-C1. The

merit of applying a power control policy is evident from

Fig. 10. Fig. 11 demonstrates that the proposed achievability

scheme achieves strictly positive private and common rates,

simultaneously, with fixed and limited relay and cooperative

jamming powers. Again, Fig. 11 shows the need of applying

power control polices at the sources.

Fig. 12 shows the achievable common sum rate under

different values of cooperative jamming powers. It is evident

that, for any power allocation at the sources, the achievable

common secure rate is higher whenever the difference between

the cooperative jamming powers is smaller. On the other hand,

Fig. 13 demonstrates the decrease in the achievable private

sum rate as the cooperative jamming power of D2 increases.

Figs. 12 and 13 demonstrate our observations in subsection

III-C2. The non-zero rate condition for the private messages,

indicated in subsection III-C1, can be readily seen from Figs.
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Fig. 12: Scenario I: Common sum rate for different values of PJ1
when Pr = 17 dB, PJ2 = 10 dB, h1 = h2 = g1 = g2 = 1, αk = 0 and
η=0.5.

7 and 13.

B. Scenario II

In Fig. 14, we demonstrate that it is possible to have positive

secure rates for both users simultaneously, with finite power

budget at the sources. We plot the achievable secure rates for

two different choices of decoding coefficients a and b. We

observe that there is no general optimal choice for the integer

linear combinations that maximize the achievable secure rates

for all cases. In addition, we observe that two different choices

of the decoded combinations at the relay may lead to the same

achievable secure rates under certain power region.

In Fig. 15, we plot the achievable secure sum rate for

finite relay’s power for two different choices of the decoded

combinations at the relay. Again, we can observe the ability of

structured signaling to achieve positive secure rates for both

users simultaneously.

Fig. 16 shows the achievable secure sum rate when a =

[1, 1, 1, 1]T and b = [1, 0, 1, 0]T . We optimize over the time

sharing factor, η, and the parameters of the second hop, ζ1
and ζ2. Clearly, increasing the relay’s power cannot decrease

the achievable secure rates of our scheme, however, it can be

seen that multiple values of the relay’s power can achieve
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Fig. 13: Scenario I: Private sum rate for different values of PJ2
when Pr = 20 dB, PJ1 = 12 dB, h1 = h2 = g1 = g2 = 1, αk = 1 and
η = 0.5.
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Fig. 14: Scenario II: Achievable secure rates vs transmit power when
β1=0.2, β2=0.12, Pr→∞, h1=g1=1, h2=g2=0.25 and optimal η.

the same secure rate, whenever the achievable secure rate

region is governed by the rates of the first hop. Generally,

we can conclude that to maximize the achievable secure rates

there is a need of optimizing over all the achievable scheme

parameters and implementing power control policies at all

network terminals.
VI. CONCLUSIONS

We have investigated a two-source two-destination two-hop

untrusted-relay network under two different scenarios various

security clearance levels for the nodes. In the first scenario,

the two destinations have different levels of security clearance:

Each source transmits two messages that should be kept secret

from the relay, and one message should be decoded by both

destinations while the other one should be decoded by the first

destination and be kept secret from the second one. We have

defined an achievable rate region for this scenario, in which

we combine stochastic encoding at the sources, cooperative

jamming from destinations, and compress-and-forward at the

relay, using Gaussian signaling.

In the second scenario, each source wishes to send a

confidential message to its intended destination and should

be kept secret from the other one. We have obtained an

achievable region, by having each source use a combination of
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Fig. 15: Scenario II: Achievable secure rates vs transmit power when
β1 = 0.4, β2 = 0.2, P̄r = 15 dB, h1=g1 =1, h2=g2 =0.7, ζ1 = 0.2,
ζ2 = 0.8 and η = 0.4.
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Fig. 16: Scenario II: Achievable sum secure rates vs transmit power
when β1 = 0.3, β2 = 0.15, h1=g1=1, h2=g2=0.3 and optimal η.

nested lattice codebooks and random binning, and having the

destinations cooperatively jam with nested lattice codewords.

The relay performs scaled compute-and-forward to decode two

distinct integer combinations of the received lattice points,

then forwards using Gaussian codewords. Additionally, we

have derived outer bounds to assess the performance of the

proposed achievable schemes. Numerical results point out the

insights that the outer bounds are tight under specific cases

and there is a need for applying power control policies at the

sources and destinations.

Overall, this work demonstrates the impact of cooperation

with an untrusted relay in multi-source multi-destination net-

works with heterogeneous nodes. In particular, the untrusted,

i.e., honest-but-curious, relay is an invaluable resource to serve

users with different levels of security clearance and to convey

messages confidential from the unintended destination.

APPENDIX A

PROOF OF THEOREM 1
Recall that from Remark 1, Yn

k
= {Jl

k
,Ym

k
}. Also, we observe

that we have the following Markov chain: (Wp

1
,Ws

1
,W

p

2
,Ws

2
)−

(V l
1
,Ul

1
,V l

2
,Ul

2
) − (X l

1
, X l

2
) −Y l

r − Ŷ l
r −Xm

r −Ym
k

. To simplify the

notation, define U = {Ul
1
,Ul

2
} and V = {V l

1
,V l

2
}.

A. Reliability

We choose the channel input distribution as follows

p(Ul
1,U

l
2,V

l
1,V

l
2, J

l
1, J

l
2, X

m
r )

= p(Ul
1)p(U

l
2)p(V

l
1 )p(V

l
2 )p(J

l
1)p(J

l
2)p(X

m
r ). (56)

D2 considers the signals Vk’s as noise while decoding the

common secure messages, thus it observes the signals Uk’s

as the output of a multiple-access relay channel (MARC) [19,

Section 3.2] [20, Section III-B3]. To define the achievable

region, we need to calculate:

I(Ul
1;Ym

2 , J
l
2, Ŷr

l |Ul
2, X

m
r )

= I(Ul
1;Ym

2 , Ŷr
l |Jl2,U

l
2, X

m
r ) + I(Ul

1; Jl2 |U
l
2, X

m
r ) (57)

= I(Ul
1;Ym

2 , Ŷr
l |Jl2,U

l
2, X

m
r ) (58)

= I(Ul
1; Ŷr

l |Ym
2 , J

l
2,U

l
2, X

m
r ) + I(Ul

1;Ym
2 |Jl2,U

l
2, X

m
r ) (59)

= I(Ul
1; Ŷr

l |Ym
2 , J

l
2,U

l
2, X

m
r ) + I(Ul

1; Zm
2 |Jl2,U

l
2, X

m
r ) (60)

= I(Ul
1; Ŷr

l |Ym
2 , J

l
2,U

l
2, X

m
r ) (61)

= I(Ul
1;Y l

r + Z l
Q |Y

m
2 , J

l
2,U

l
2, X

m
r ) (62)

= I(Ul
1;

√
h1X l

1 +
√
g1Jl1 +

√
g2Jl2 +

√
h2X l

2 + Z l
r + Z l

Q

|√g2Xm
r + Zm

2 , J
l
2,U

l
2, X

m
r ) (63)

= I(Ul
1;

√
h1X l

1 +
√
g1Jl1 +

√
h2V l

2 + Z l
r + Z l

Q) (64)

= lC

(
ᾱ1h1P1

1 + g1PJ1 + α1h1P1 + α2h2P2 + σ
2
Q

)

. (65)

Similarly, we get

I(Ul
2;Ym

2 , J
l
2, Ŷr

l|Ul
1, X

m
r )= lC

(
ᾱ2h2P2

1+g1PJ1+α1h1P1+α2h2P2+σ
2
Q

)

,

(66)

Next, we calculate

I(Ul
1,U

l
2;Ym

2 , J
l
2, Ŷr

l |Xm
r )

= I(Ul
1,U

l
2;Ym

2 , Ŷr
l |Jl2, X

m
r ) + I(Ul

1,U
l
2; Jl2 |X

m
r ) (67)

= I(Ul
1,U

l
2;Ym

2 , Ŷr
l |Jl2, X

m
r ) (68)

= I(Ul
1,U

l
2; Ŷr

l |Ym
2 , J

l
2, X

m
r ) + I(Ul

1,U
l
2;Ym

2 |Jl2, X
m
r ) (69)

= I(Ul
1,U

l
2; Ŷr

l |Ym
2 , J

l
2, X

m
r ) + I(Ul

1,U
l
2; Zm

2 |Jl2, X
m
r ) (70)

= I(Ul
1,U

l
2; Ŷr

l |Ym
2 , J

l
2, X

m
r ) (71)

= I(Ul
1,U

l
2;Y l

r + Z l
Q |Y

m
2 , J

l
2, X

m
r ) (72)

= I(Ul
1,U

l
2;

√
h1X l

1 +
√
g1Jl1 +

√
g2Jl2 +

√
h2X l

2 + Z l
r + Z l

Q

|√g2Xm
r + Zm

2 , J
l
2, X

m
r ) (73)

= I(Ul
1,U

l
2;

√
h1X l

1 +
√
g1Jl1 +

√
h2X l

2 + Z l
r + Z l

Q) (74)

= nC

(
ᾱ1h1P1 + ᾱ2h2P2

1 + g1PJ1 + α1h1P1 + α2h2P2 + σ
2
Q

)

. (75)

Since, the decodability of the common secure messages needs

to be ensured at both destinations, we obtain the following

terms for D1

I(Ul
1;Ym

1 ,J
l
1, Ŷr

l|Ul
2, X

m
r )=lC

(
ᾱ1h1P1

1+g2PJ2+α1h1P1+α2h2P2+σ
2
Q

)

,

(76)
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I(Ul
2;Ym

1 ,J
l
1, Ŷr

l|Ul
1, X

m
r )=lC

(
ᾱ2h2P2

1+g2PJ2+α1h1P1+α2h2P2+σ
2
Q

)

,

(77)

I(Ul
1,U

l
2;Ym

1 ,J
l
1,Ŷr

l |Xm
r )= lC

(
ᾱ1h1P1+ᾱ2h2P2

1+g2PJ2+α1h1P1+α2h2P2+σ
2
Q

)

.

(78)

After decoding the common secure messages, D1 starts de-

coding the private messages. For this, we calculate

I(V l
1 ;Ym

1 , J
l
1, Ŷr

l |U,V l
2, X

m
r )

= I(V l
1 ;Ym

1 , Ŷr
l |Jl1,U,V

l
2, X

m
r ) + I(V l

1 ; Jl1 |U,V
l
2, X

m
r ) (79)

= I(V l
1 ;Ym

1 , Ŷr
l |Jl1,U,V

l
2, X

m
r ) (80)

= I(V l
1 ; Ŷr

l |Ym
1 , J

l
1,U,V

l
2, X

m
r )+I(Vl

1 ;Ym
1 |Jl1,U,V

l
2, X

m
r ) (81)

= I(V l
1 ; Ŷr

l |Ym
1 , J

l
1,U,V

l
2, X

m
r )+I(Vl

1 ; Zm
1 |Jl1,U,V

l
2, X

m
r ) (82)

= I(V l
1 ; Ŷr

l |Ym
1 , J

l
1,U,V

l
2, X

m
r ) (83)

= I(V l
1 ;Y l

r + Z l
Q |Y

m
1 , J

l
1,U,V

l
2, X

m
r ) (84)

= I(V l
1 ;

√
h1X l

1+
√
g1Jl1+

√
g2Jl2+

√
h2X l

2+Z l
r+Z l

Q

|√g1Xm
r +Zm

1 , J
l
1,U,V

l
2, X

m
r ) (85)

= I(V l
1;
√

h1V l
1+

√
g2Jl2+Z l

r+Z l
Q)= lC

(
α1h1P1

1+g2PJ2+σ
2
Q

)

. (86)

Similarly, we get

I(V l
2 ;Ym

1 , J
l
1, Ŷr

l |U,V l
1, X

m
r ) = lC

(
α2h2P2

1 + g2PJ2 + σ
2
Q

)

, (87)

I(V l
1,V

l
2 ;Ym

1 , J
l
1, Ŷr

l |U, Xr ) = lC

(
α1h1P1 + α2h2P2

1 + g2PJ2 + σ
2
Q

)

. (88)

Next, we calculate

I(X l
1;Ym

1 , J
l
1, Ŷr

l |X l
2, X

m
r )

= I(X l
1;Ym

1 , Ŷr
l |Jl1, X

l
2, X

m
r ) + I(X l

1; Jl1 |X
l
2, X

m
r ) (89)

= I(X l
1;Ym

1 , Ŷr
l |Jl1, X

l
2, X

m
r ) (90)

= I(X l
1; Ŷr

l |Ym
1 , J

l
1, X

l
2, X

m
r ) + I(X l

1;Ym
1 |Jl1, X

l
2, X

m
r ) (91)

= I(X l
1; Ŷr

l |Ym
1 , J

l
1, X

l
2, X

m
r ) + I(X l

1; Zm
1 |Jl1, X

l
2, X

m
r ) (92)

= I(X l
1; Ŷr

l |Ym
1 , J

l
1, X

l
2, X

m
r ) (93)

= I(X l
1;Y l

r + Z l
Q |Y

m
1 , J

l
1, X

l
2, X

m
r ) (94)

= I(X l
1;

√
h1X l

1 +
√
g1Jl1 +

√
g2Jl2 +

√
h2X l

2 + Z l
r + Z l

Q

|√g1Xm
r + Zm

1 , J
l
1, X

l
2, X

m
r ) (95)

= I(X l
1;
√

h1X l
1+Z l

r+
√
g2Jl2+Z l

Q)= lC

(
h1P1

1+g2PJ2+σ
2
Q

)

. (96)

Similarly, we can get

I(X l
2;Ym

1 , J
l
1, Ŷr

l |X l
1, X

m
r ) = lC

(
h2P2

1 + g2PJ2 + σ
2
Q

)

, (97)

I(X l
1, X

l
2;Ym

1 , J
l
1, Ŷr

l |Xm
r ) = lC

(
h1P1 + h2P2

1 + g2PJ2 + σ
2
Q

)

. (98)

Finally, we must determine the quantization noise variance σ2
Q

such that both destinations are able to decode their messages.

To capture this, we have to calculate the following terms

I(Xm
r ;Ym

2 , J
l
2) = mC(g2Pr ), (99)

I(Xm
r ;Ym

1 , J
l
1) = mC(g1Pr ). (100)

Then, we calculate

I(Ŷr
l
;Y l

r |Xm
r ,Y

m
2 , J

l
2) = I(Y l

r + Z l
Q;Y l

r |Xm
r , Z

l
2, J

l
2) (101)

= I(
√

h1X l
1 +

√
g1Jl1 +

√
h2X l

2 + Z l
r + Z l

Q;
√

h1X l
1 +

√
g1Jl1 +

√
h2X l

2 + Z l
r ) (102)

= lC

(
h1P1 + h2P2 + g1PJ1 + 1

σ2
Q

)

. (103)

Similarly, we get

I(Ŷr
l
;Y l

r |Xm
r ,Y

m
1 , J

l
1)= lC

(
h1P1+h2P2+g2PJ2+1

σ2
Q

)

. (104)

B. Equivocation Calculations

H(Wp

1
W

p

2
|Ym

2 Jl2) ≥ H(Wp

1
W

p

2
|Ym

2 Jl2UXm
r Ŷ l

r ) (105)

= H(Wp

1
W

p

2
|Jl2UXm

r Ŷ l
r ) (106)

= H(Wp

1
W

p

2
|Jl2U ) − I(Wp

1
W

p

2
; Xm

r Ŷ l
r |Jl2U ) (107)

= H(Wp

1
W

p

2
) − I(Wp

1
W

p

2
; Xm

r |Jl2U ) − I(Wp

1
W

p

2
; Ŷ l

r |Xm
r Jl2U ).

(108)

From (56) the channel inputs are independent, thus we have

I(Wp

1
W

p

2
; Xm

r |Jl2U ) ≤ I(Wp

1
W

p

2
, X l

1X l
2; Xm

r |Jl2U )
= I(X l

1X l
2; Xm

r |Jl2U ) = 0. (109)

Then, we have
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1
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p

2
|Ym

2 Jl2)≥H(Wp

1
,W

p

2
)−I(Wp

1
W

p

2
; Ŷ l

r |Xm
r Jl2U ) (110)

= H(Wp

1
,W

p

2
) − I(Wp

1
W

p

2
; Ŷ l

r |Jl2U ) (111)

= H(Wp

1
,W

p

2
) − h(Ŷ l

r |Jl2U ) + h(Ŷ l
r |W

p

1
W

p

2
Jl2U )

+ I(Wp

1
W

p

2
; Ŷ l

r |Jl2UV ) (112)

= H(Wp

1
,W

p

2
) − h(Ŷ l

r |Jl2U ) + h(Ŷ l
r |W

p

1
W

p

2
Jl2U )

+ h(Ŷ l
r |Jl2UV ) − h(Ŷ l

r |W
p

1
W

p

2
Jl2UV ) (113)

= H(Wp

1
,W

p

2
) − I(Ŷ l

r ;V |Jl2U ) + I(Ŷ l
r ;V |Wp

1
W

p

2
Jl2U ) (114)

= H(Wp

1
,W

p

2
) − I(Ŷ l

r ;V |Jl2U ) + h(V |Wp

1
W

p

2
Jl2U )

− h(V |Wp

1
W

p

2
Jl2UŶ l

r ) (115)

≥ H(Wp

1
,W

p

2
) − I(Ŷ l

r ;V |Jl2U ) + h(V |Wp

1
W

p

2
Jl2U )

− h(V |Wp

1
W

p

2
Jl2UŶ l

r ) (116)

≥H(Wp

1
,W

p

2
)−lC

(
α1h1P1+α2h2P2

1+g1PJ1+σ
2
Q

)

+lRx2
1 +lRx2

2 −lǫ1. (117)

Note that with the knowledge of Y l
r , and the bin index the

eavesdropper at the relay is assumed to be able to decode the

transmitted codeword. Here, whenever g2PJ2 ≥ σ2
Q

, the last

term is bounded by Fano’s inequality as with the knowledge of

Ŷ l
r , the cooperative jamming signal from the second destination

and the bin index, the eavesdropper at the relay is assumed

to be able to decode the transmitted codeword since it has
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higher SN R than the aforementioned case. Also, observe that

if g2PJ2 ≤ σ2
Q

, the rates of common secure messages are zero,

and in this case we need only to protect the private message

from the eavesdropper associated with the relay as the SN R

at D2 will be less than the one at the relay. Similarly, we get

H(Wp

1
|Ym

2 Jl2) ≥H(Wp

1
) − lC

(
α1h1P1

1 + g1PJ1 + α2h2P2 + σ
2
Q

)

+ lRx2
1 − lǫ2, (118)

H(Wp

2
|Ym

2 Jl2) ≥H(Wp

2
) − lC

(
α2h2P2

1 + g1PJ1 + α1h1P1 + σ
2
Q

)

+ lRx2
2 − lǫ3. (119)

We need to guarantee that the relay is not able to decode the

common secure messages, i.e.,

H(Ws
1,W

s
2 |Y

l
r ) = H(Ws

1,W
s
2 ) − I(Ws

1Ws
2 ;Y l

r ) (120)

= H(Ws
1,W

s
2 ) − I(Ws

1 Ws
2 ;Y l

r ) + I(Ws
1 Ws

2 ;Y l
r |U ) (121)

= H(Ws
1,W

s
2 ) − h(Y l

r ) + h(Y l
r |Ws

1 Ws
2 )

+ h(Y l
r |U ) + h(Y l

r |Ws
1 Ws

2U ) (122)

= H(Ws
1,W

s
2 ) − I(U ;Y l

r ) + I(U ;Y l
r |Ws

1 Ws
2 ) (123)

= H(Ws
1,W

s
2 )−I(U ;Y l

r )+h(U |Ws
1Ws

2 )−h(U |Y l
rWs

1 Ws
2 ) (124)

= H(Ws
1,W

s
2 )+lRx1

1 +lRx1
2

−lC

(
ᾱ1h1P1+ᾱ2h2P2

1+g1PJ1+g2PJ2+α1h1P1+α2h2P2

)
−lǫ4. (125)

Similarly, we can get

H(Ws
1 |Y

l
r ) ≥ H(Ws

1 ) + lRx1
1

− lC

(
ᾱ1h1P1

1 + g1PJ1 + g2PJ2 + α1h1P1 + h2P2

)
− lǫ5, (126)

H(Ws
2 |Y

l
r ) ≥ H(Ws

2 ) + lRx1
2

− lC

(
ᾱ2P2

1 + g1PJ1 + g2PJ2 + α2h2P2 + h1P1

)
− lǫ6 . (127)

Finally, since all messages should be kept secret from the relay,

we have
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1 ,W

s
2 ,W

p
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2
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2
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1
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p

1
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p

2
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1,W

s
2 ,W

p

1
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p

2
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r )
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r |Ws
1 Ws

2W
p

1
W

p

2
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1,W

s
2 ,W

p

1
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2
) + h(V U |Ws
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1
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p

2
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r Ws
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1
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= H(Ws
1,W

s
2 ,W

p

1
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p

2
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(
h1P1+h2P2

1+g1PJ1+g2PJ2

)

+lRx1
1 +lRx1

2 +lRx2
1 +lRx2

2 −lǫ7. (133)

Similarly, we can get

H(Ws
1,W

p

1
|Y l
r ) =H(Ws

1,W
p

1
) − lC

(
h1P1

1 + g1PJ1 + g2PJ2

)

+ lRx1
1 + lRx2

1 − lǫ8, (134)

H(Ws
2,W

p

2
|Y l
r ) =H(Ws

2,W
p

2
) − lC

(
h2P2

1 + g1PJ1 + g2PJ2

)

+ lRx1
2 + lRx2

2 − lǫ9. (135)

Therefore, by proper choice of the bin sizes, represented by

the randomization rates, Rx1
k

and Rx2
k

, we get the achievable

region stated in Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Here, we detail the derivation of the outer bounds presented

in subsection III-D. For the rate of the message Ws
1

, we have

H(Ws
1 ) ≤ H(Ws

1 |Y
n
e ) + nǫ10 (136)

≤ H(Ws
1 |Y

l
e ) − H(Ws

1 |X
l
2Xm

r Ym
2 Jl2) + nǫ11 (137)

= H(Ws
1 |Y

l
e ) − H(Ws

1 |X
l
2Xm

r Jl2) + nǫ11 (138)

≤ H(Ws
1 |Y

l
e ) − H(Ws

1 |X
l
2Xm

r Y l
r Jl2) + nǫ11 (139)

= H(Ws
1 |Y

l
e ) − H(Ws

1 |X
l
2Y l

r Jl2) + nǫ11 (140)

= H(Ws
1 |Y

l
e ) − H(Ws

1 |X
l
2, J

l
2,√

h1X l
1 +

√
g1Jl1 +

√
h2X l

2 +
√
g2Jl2 + Z l

r ) + nǫ11 (141)

= H(Ws
1 |Y

l
e ) − H(Ws

1 |
√

h1X l
1 +

√
g1Jl1 + Z l

r ) + nǫ11 (142)

≤ H(Ws
1 |Y

l
e ) − H(Ws

1 |
√

h1X l
1+

√
g1Jl1+Z l

r,Y
l
e )+nǫ11. (143)

(136) is due to the secrecy constraint, 1
n

H(Ws
1
|Yn
e ) ≥

1
n

H(Ws
1
) − ǫ . (137) is due to the fact that the relay receives in

the first l channel uses only and thus Yn
e can be replaced by

Y l
e , and due to Fano’s inequality H(Ws

1
|X l

2
Xm
r Ym

2
Jl

2
) ≤ ǫ , i.e.,

given its received and jamming signals, D2 must be able to

decode Ws
1
. In (138), we eliminate Ym

2
as Xm

r is given to the

destinations by a genie and Ym
2
=
√
g2Xm

r + Zm
2

. (139) follows

from the fact that conditioning cannot increase the entropy. We

have (140) since Xm
r is a deterministic function of Y l

r . (143) is

due to the fact that conditioning cannot increase the entropy.

To simplify the notation, define Gl
1
=

√
h1X l

1
+
√
g1Jl

1
+ Z l

r .

Excluding the nǫ11 term for convenience, (143) becomes

H(Ws
1 |Y

l
e ) − H(Ws

1 |G
l
1,Y

l
e ) = I(Ws

1 ; Gl
1 |Y

l
e ) (144)

≤ I(Ws
1 , X

l
1; Gl

1 |Y
l
e ) (145)

= I(X l
1; Gl

1 |Y
l
e ) (146)

=h(Gl
1 |Y

l
e )−h(√g1Jl1+Z l

r |
√

h2X l
2+Z l

e +
√
g1Jl1+

√
g2Jl2) (147)

≤ h(Gl
1 |Y

l
e )−h(Jl1+Z l

r |
√

h2X l
2+Z l

e+
√
g1Jl1+

√
g2Jl2, J

l
2) (148)

= h(Gl
1 |Y

l
e ) − h(√g1Jl1 + Z l

r |Z l
e +

√
g1Jl1 +

√
h2X l

2), (149)

which can be maximized with Gaussian signals, thus we get

the upper bound in (23). Similarly, we proceed to calculate

the outer bound on common secure sum rate

H(Ws
1 ,W

s
2 ) ≤ H(Ws

1 ,W
s
2 |Y

n
e ) + nǫ12

≤ H(Ws
1 ,W

s
2 |Y

l
e ) − H(Ws

1,W
s
2 |X

m
r Ym

2 Jl2) + nǫ13 (150)
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= H(Ws
1,W

s
2 |Y

l
e ) − H(Ws

1,W
s
2 |X

m
r Jl2) + nǫ13 (151)

≤ H(Ws
1,W

s
2 |Y

l
e ) − H(Ws

1,W
s
2 |X

m
r Y l

r Jl2) + nǫ13 (152)

= H(Ws
1,W

s
2 |Y

l
e ) − H(Ws

1,W
s
2 |Y

l
r Jl2) + nǫ13 (153)

=H(Ws
1,W

s
2 |Y

l
e )−H(Ws

1,W
s
2 |
√

h1X l
1+

√
h2X l

2+
√
g1Jl1+Z l

r )+nǫ13

(154)

≤H(Ws
1,W

s
2 |Y

l
e )−H(Ws

1,W
s
2 |

√
h1X l

1+

√
h2X l

2+
√
g1Jl1+Z l

r,Y
l
e )

+ nǫ13. (155)

To simplify the notation, let Gl
2
=

∑2
k=1

√
hkX l

k
+
√
g1Jl

1
+ Z l

r .

Thus, we have

H(Ws
1 ,W

s
2 |Y

l
e ) − H(Ws

1,W
s
2 |G

l
2,Y

l
e )

= I(Ws
1,W

s
2 ; Gl

2 |Y
l
e ) (156)

≤ I(Ws
1,W

s
2 , X

l
1, X

l
2; Gl

2 |Y
l
e ) (157)

= I(X l
1, X

l
2; Gl

2 |Y
l
e ) (158)

= h(Gl
2 |Y

l
e ) − h(√g1Jl1 + Z l

r |Z l
e +

√
g1Jl1 +

√
g2Jl2) (159)

≤ h(Gl
2 |Y

l
e )−h(√g1Jl1+Z l

r |Z l
e+

√
g1Jl1+

√
g2Jl2, J

l
2) (160)

= h(Gl
2 |Y

l
e ) − h(√g1Jl1 + Z l

r |Z l
e +

√
g1Jl1). (161)

Thus, we can get the upper bound in (24).

Similar to going from (137) to (149), we have, for the rates

of W
p

1
and Ws

1
,

H(Wp

1
,Ws

1 |Y
n
e )

≤ h(Gl
3 |Y

l
e )−h(√g2Jl2+Z l

r|Z l
e+

√
h2X l

2+
√
g2Jl2), (162)

where Gl
3
=

√
h1X l

1
+
√
g2Jl

2
+ Z l

r . Let Ok
tp = hkPk + g2PJ2.

Thus, we have the upper bound in (25). The upper bound on

the sum rate, R
p

1
+ R

p

2
+ Rs

1
+ Rs

2
, can be calculated similar to

(150)-(161) as

H(Wp

1
,W

p

2
,Ws

1,W
s
2 |Y

n
e )

≤ h(Gl
4 |Y

l
e )−h(√g2Jl2+Z l

r|Z l
e+

√
g2Jl2), (163)

where Gl
4
=

∑2
k=1

√
hkX l

k
+
√
g2Jl

2
+Z l

r . Thus, we get the upper

bound in (26).

APPENDIX C

PROOF OF THEOREM 3

Here, we complete the proof of Theorem 3 by calculating

the equivocation rates obtained by the proposed achievability

scheme. First, we recall some results that will be used through-

out the equivocation analysis.

Lemma 1. [21] Let tA, tB be two independent random

variables distributed over compact abelian group and tB has

a uniform distribution, then tA ⊕ tB is independent from tA.

Theorem 4. The representation theorem [22]: Assume

tN
1

,tN
2

,..,tN
K

are K vectors taken from V(Λ). There exist an

integer T, such that 1 ≤ T ≤ KN ,
∑K

k=1 tN
k

is uniquely

determined by {T,∑K
k=1 tN

k
mod Λ}.

Lemma 2. [23] For random variables A and B, and discrete

random variable T, we have H(A|B,T ) ≥ H(A|B) − H(T ).

To simplify the notation, we omit the conditioning on the

dither vectors, scaling factors βk ’s and the channel gains as

they are assumed to be known at all network nodes.

A. At the untrusted relay

H(tN1 |Yn
r ,W2) ≥ H(tN1 |Yn

r , Z
n
r , X

n
2 , X

n
4 ,W2) (164)

= H(tN1 |XN
1 + JN

1 ) (165)

= H(tN1 |XN
1 + JN

1 mod Λ1/β1,T1) (166)

= H(tN1 |tN1 /β1 + tN3 /β1 mod Λ1/β1,T1) (167)

≥ H(tN1 |tN1 /β1 + tN3 /β1 mod Λ1/β1) − H(T1) (168)

≥ H(tN1 ) − H(T1) (169)

≥ H(tN1 ) − N . (170)

The steps (166) and (170) follow from the representation the-

orem for K = 2, where T1 is an integer such that 1 ≤ T1 ≤ 2N ,

while step (168) results by applying Lemma 2. (169) is due

to Lemma 1. Finally, from (170), we obtain

1

N
I(tN1 ;Yn

r ,W2) ≤ 1. (171)

Similarly, we can obtain the following for tN
2

1

N
I(tN2 ;Yn

r ,W1) ≤ 1. (172)

The above results imply that the leaked information about

the value of tN
1

(tN
2

) to the relay node cannot exceed 1 bit

per channel use, therefore by using random binning we can

guarantee the secrecy of the messages at the untrusted relay

and achieve the rates given in Theorem 3.

B. At the destinations

Here, we focus on the equivocation analysis of the confi-

dential messages at the destinations.

H(W1 |Yn
2 , J

n
2 ,W2) ≥ H(W1 |Yn

2 , J
n
2 ,W2, X

m
r2, Z

m
2 )

= H(W1 |Xm
r1) = H(W1). (173)

The last step follows from Lemma 1, i.e., Xm
r1

and t̄N
1

are

independent. Similarly, we can get

H(W2 |Yn
1 , J

n
1 ,W1) ≥ H(W2). (174)

APPENDIX D

OPTIMAL α1, α2 AND λ

A. Optimizing N1 over α1

Note that N1(α1) expressed in (45) can be written in the

following vector form

N1(α1) = Pα2
1 | |h| |2 + | |â| |2P − 2α1h

T âP + α2
1 . (175)

By differentiating the right hand side with respect to α1

and setting the first derivative to be zero, we can obtain the

following optimum value of α1 that minimizes N1(α)

α∗1 =
PhT â

1 + P | |h| |2
, (176)

which results in the following value for N1(α)

N1(α∗1) = | |â| |2P − P2(hT â)2
1 + P | |h| |2

. (177)
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B. Optimizing N2 over α2 and λ

N2(α2, λ), defined in (50), can be expressed in the following

vector form

N2(α2, λ) = (α2h−b̂−λâ)T (α2h−b̂−λâ)P+α2
2 . (178)

Furthermore, we can write the above equation in the following

matrix form

N2(α2, λ) =
[
α2 λ

] [1 + hThP −hT âP

−hT âP âT âP

] [
α2

λ

]

+

[
−2hT b̂P 2b̂T b̂P

] [
α2

λ

]
+b̂T b̂P. (179)

Let x=
[
α2 λ

]T
, qT =

[
−2hT b̂P 2b̂T b̂P

]
, c = b̂T b̂P, and

A=

[
1 + hThP −hT âP

−hT âP âT âP

]
. Now, (179) can be rewritten as

N2(x) = xTAx + qTx + c. (180)

Again, by differentiating and setting the first derivative to be

zero, we obtain

x∗
= −0.5A−1q. (181)

Now, if we plug x∗ in (180), we get

N2(x∗) = 0.25qT (A−1)TAA−1q−0.5qTA−1q+c (182)

= c − 0.25qTAq. (183)

(183) follows from the symmetry of the 2×2 matrix A.
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