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Abstract—This paper considers the two-user interference relay
channel where each source wishes to communicate to its desti-
nation a message that is confidential from the other destination.
Furthermore, the relay, that is the enabler of communication,
due to the absence of direct links, is untrusted. Thus, the
messages from both sources need to be kept secret from the
relay as well. We provide an achievable secure rate region for this
network. The achievability scheme utilizes structured codes for
message transmission, cooperative jamming and scaled compute-
and-forward. In particular, the sources use nested lattice codes
and stochastic encoding, while the destinations jam using lattice
points. The relay decodes two integer combinations of the received
lattice points and forwards, using Gaussian codewords, to both
destinations. The achievability technique provides the insight that
we can utilize the untrusted relay node as an encryption block in
a two-hop interference relay channel with confidential messages.

I. INTRODUCTION

Cooperation with untrusted, i.e., honest but curious, relays
has been studied in [1] and [2]. In contrast to reference [1],
where the untrusted relay node is found to be ineffective as
a cooperative entity if the relay channel is degraded/reversely
degraded, reference [2] has shown that cooperation with an
untrusted relay can be useful in other channel set ups. Ref-
erence [3] has considered the case where there is no direct
link from the source to the destination, i.e., the untrusted
relay is the only means of communication, and has shown
that a positive secure rate is achievable with the aid of
cooperative jamming from the destination. More specifically, in
this set up, Gaussian codewords are employed with stochastic
encoding, while the destination serves as a cooperative jammer
transmitting Gaussian noise, and the relay employs Gaussian
signaling and compress-and-forward. This model has been
extended to the multiple access channel with an untrusted relay
in [4]. The two-hop network with an untrusted relay has been
also investigated in [5] where the source and destination use a
nested lattice codebook to transmit their signals and the relay
employs compute-and-forward. Furthermore, this scheme has
also been extended to a multi-hop line network, where it is
established that the achievable secure rate is independent of
the number of hops [6]. Cooperation with untrusted relays
has been further investigated under different scenarios, see,
for example, [7]–[11]. In particular, in recent reference [10],
the untrusted relay is employed to serve users with different
levels of security clearance. Specifically, an X-channel with
an untrusted relay has been considered where one of the
destinations has higher security clearance. In this set up, each
source transmits a common and private message, the common

message should be decoded by both destinations, while the
private message, should only be decoded by the destination
with higher security clearance. Using Gaussian codebooks with
stochastic encoding at the sources with the help of cooperative
jamming from the destinations and compress-and-forward as
the relaying strategy, we have defined an achievable secure rate
region for this network [10]. It is worthwhile to note that in
this previous work, the destination of higher security clearance
has been assumed to have higher jamming power constraint.

In this paper, we consider a more egalitarian model, where
each source aims to transmit one confidential message to
its intended destination which should be kept secret from
the other destination. We assume a two-hop model where
a relay is the sole enabler of communication. The relay is
untrusted and both messages are to be kept secret from it. The
model is termed descriptively as the two-user two-hop interfer-
ence untrusted-relay channel with confidential messages. This
model resembles an ad-hoc network where the relay node is
shared between different source-destination pairs that do not
trust each other. We define an achievable secure rate region
for this new model motivated by the recent results in scaled
compute-and-forward and successive cancellation in [12] and
[13]. In particular, each source uses random binning [14] on
a nested lattice codebook, while its destination jams the relay
with another independent codeword chosen uniformly from a
nested lattice codebook. Therefore, the relay receives a noisy
version of four independent lattice points. We require the
untrusted relay to decode two integer combinations of these
four points, such that it obtains two distinct linear integer
combinations each of which represents the transmitted lattice
points from a source-destination pair. The relay encodes each
combination into a Gaussian codeword and transmits the sum
of these two signals to both destinations. With the help of its
jamming signal, each destination is able to recover its intended
message, while the other message is secure at the unintended
destination. In other words, our work shows that the untrusted
relay can serve as an encryption block to secure the confidential
messages over interference relay channels. The remainder of
the paper is organized as follows. In Section II, we describe
the model. The achievability scheme is detailed in Section III.
The equivocation analysis is provided in Section IV. Finally,
Section V summarizes our conclusions and learned insights.

II. SYSTEM MODEL

Consider a two-user interference channel with an untrusted
relay as shown in Fig. 1. No direct links exist between the
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Fig. 1. The two-hop interference untrusted-relay channel with confidential
messages.

sources and destinations, therefore, the untrusted relay is the
only enabler of communication in this network. Node 1 aims to
send a confidential message W1, from the set {1, 2, .., 2NR1},
that should be decoded only by node 3 and be kept secret from
node 4 as well as the untrusted relay. Similarly, node 2 aims to
send a confidential message W2, from the set {1, 2, .., 2NR2},
that should be decoded only by node 4 and be kept secret from
node 3 as well as the untrusted relay. We consider a half-duplex
scenario: nodes cannot transmit and receive simultaneously,
therefore, the communications alternates between two phases.
During the first phase, which occurs over l channel uses, nodes
1 and 2 transmit their signals to the untrusted relay while nodes
3 and 4 serve as cooperative jammers. The relay remains silent
during this phase, and its received signal at channel use i is
given by

Yr(i) =
4

∑

k=1

√

hkXk(i) + Zr(i), i = 1, ..l, (1)

where
√
hk is the channel gain from node k to the relay, Xk

is the transmitted signal by node k, and Zr is the additive
zero-mean Gaussian noise with unit variance. We assume
each source-destination pair implements power control, and
considers a received power constraint, or equivalently, we
assume, without loss of generality, that h1 = h3 and h2 = h4.

During the second phase, which occurs over m channel
uses, the relay forwards its signal to nodes 3 and 4. Nodes
1, 2, 3 and 4 remain silent over this phase, and the received
signal by node j at channel use i is expressed as

Yj(i) =
√
gjXr(i) + Zj(i), i = l + 1, .., l +m, (2)

where
√
gj is the channel gain from the relay node to node j,

Xr is the transmitted signal by the relay node and Zj is the
additive zero-mean Gaussian noise with unit variance.

The transmitted signal from each node has to satisfy an
average power constraint that is given by

1

n

n
∑

i=1

E[X2
k(i)] ≤ P̄ , k ∈ {1, 2, 3, 4}, (3)

1

n

n
∑

i=1

E[X2
r (i)] ≤ P̄r, (4)

where n = l+m is the total number of the channel uses. Due
to the fact that each node is transmitting only over one of the
two phases, the transmitted signal from each node is subject
to an effective average power constraint given by

P =
P̄

η
, PR =

P̄r

1− η
, (5)

where η = l
n is the time sharing parameter of the first phase.

The secrecy of the confidential message Wl needs to be
ensured at both the unintended destination and untrusted relay
node. Therefore, we define the secrecy constraints at the
unintended destinations and relay as follows.

1

n
H(W2|Y n

3 ,W1, X
n
3 ) ≥

1

n
H(W2)− ǫ, (6)

1

n
H(W1|Y n

4 ,W2, X
n
4 ) ≥

1

n
H(W1)− ǫ, (7)

1

n
H(Wl|Y n

r ,Wk) ≥
1

n
H(Wl)− ǫ l, k = 1, 2; l 6= k. (8)

III. ACHIEVABLE SECURE RATE REGION

In this section, we provide the details of the achievability
scheme.

A. The first phase

At each source, we use nested lattices and random binning,
similar to [6]. We start with the illustration of the inner code
that is motivated by scaled compute-and-forward proposed in
[12] and [13].

Let us first set up the notation related to lattice codes. A
lattice Λ is a discrete group of RN that satisfies the condition
that if tN1 , tN2 ∈ Λ, then tN1 + tN2 ∈ Λ. The lattice quantizer,
QΛ : RN → Λ, is defined as

QΛ(x
N ) = arg min

tN∈Λ
||tN − xN ||, (9)

where ||tN − xN || is the Euclidean distance between tN and
xN . The quantization error is given by the modulo operation
which is defined as

xN mod Λ = xN − arg min
tN∈Λ

||tN − xN ||. (10)

The fundamental Voronoi region of Λ is defined to be

V(Λ) = {xN : QΛ(x
N ) = 0}, (11)

where 0 is all-zero vector with length N . Λ and Λk are nested
lattices if Λk ⊆ Λ. Λ is the coarse lattice, and Λk is the fine
lattice. Let βk be a non-zero real number and β = [β1, .., β4]

T .
Lattices Λk ⊆ Λ for k = 1, .., 4, are constructed such that for
Λk, we have

1

NVol(V(Λk))

∫

V(Λk)

||xN ||2dx = β2
kP. (12)

Node k generates its codebook Ck = Λ∩V(Λk) with rate given
by

Rc
k =

1

N
log |Ck| =

1

N
log

Vol(V(Λk))

Vol(V(Λ)) . (13)

In our achievable scheme, we assume that C1 = C3, C2 = C4,
β1 = β3 and β2 = β4, i.e., each source-destination pair uses
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the same nested lattice codebook. To transmit a lattice point
tNk , node k forms the following signal

XN
k = (tNk /βk + dNk ) mod Λk/βk, (14)

where dNk is a dither vector that is uniformly distributed over
the scaled Voronoi region V(Λk)/βk, and it is assumed to be
known to all network nodes.

Each source applies stochastic encoding as an outer code.
More specifically, node k, k = 1, 2, divides the codewords of
its codebook Ck into 2NRk bins, each of which is indexed by
the corresponding Wk. The size of these bins are chosen to
ensure the secrecy of the message Wk from the eavesdropper
associated with the relay node as we will see in the following
section. To send message Wk, node k randomly picks a
point tNk from the bin indexed by Wk and then transmits the
corresponding signal XN

k . Meanwhile, nodes 3 and 4 randomly
choose tN3 ∈ C3, and tN4 ∈ C4, respectively, and transmit the
corresponding signals XN

3 and XN
4 .

Decoding at the relay: We require the relay to decode two
different integer combinations of the received lattice points. Let
a = [a1, .., a4]

T and b = [b1, .., b4]
T represent the coefficients

of the decoded combinations. The relay follows the same
procedure as in [13] for decoding. From its received signal,
the relay forms the following signal to decode the first integer
combination

ȳN1 = α1Y
N
r −

4
∑

k=1

akβkd
N
k (15)

=
4

∑

k=1

(α1hk − akβk)X
N
k + α1Z

N
r +

4
∑

k=1

akβkX
N
k

−
4

∑

k=1

akβkd
N
k , (16)

where α1 is some real number. To simplify the notation, we

define z̄N1 =
∑4

k=1(α1hk − akβk)X
N
k + α1Z

N
r . Note that

thanks to the dither vector dNk , the signals tNk and XN
k are

independent. Now, we can express (16) as follows.

ȳN1 = z̄N1 +

4
∑

k=1

akβkX
N
k −

4
∑

k=1

akβkd
N
k (17)

=
4

∑

k=1

ak(βk(t
N
k /βk + dNk )− βkQΛk/βk

(tNk /βk + dNk ))

+ z̄N1 −
4

∑

k=1

akβkd
N
k (18)

= z̄N1 +
4

∑

k=1

ak(t
N
k −QΛk

(tNk + βkd
N
k )) (19)

= z̄N1 +

4
∑

k=1

ak t̄
N
k , (20)

where t̄Nk = tNk − QΛk
(tNk + βkd

N
k ). The relay is able to

decode the integer combination
∑4

k=1 ak t̄
N
k that lies in the

coarse lattice Λ by considering z̄N1 as noise because z̄N1
∑4

k=1 ak t̄
N
k are independent. Hence, the achievable rate for

this combination is given by

Rk1 ≤ max

(

max
α1

0.5 log
βkP

N1(α1)
, 0

)

, (21)

where N1(α1) is the variance of z̄N1 which is given by

N1(α1) =

4
∑

k=1

(α1hk − akβk)
2P + α2

1. (22)

The maximization of the rate in (21) is equivalent to mini-
mizing N1 over α1, which results in the following value of
N1

N1(α
∗
1) = ||â||2P − P 2hT â

1 + P ||h||2 , (23)

where h = [h1, .., h4]
T and â = [β1a1, .., β4a4]

T .

Using the decoded combination
∑4

k=1 ak t̄
N
k , the relay per-

forms successive cancellation and forms the following signal
to decode the second integer combination

ȳN2 = α2Y
N
r −

4
∑

k=1

bkβkd
N
k − λ(

4
∑

k=1

ak t̄
N
k +

4
∑

k=1

akβkd
N
k )

(24)

=
4

∑

k=1

[α2hk − (λak + bk)βk]X
N
k + α2Z

N
r +

4
∑

k=1

bk t̄
N
k

(25)

= z̄N2 +
4

∑

k=1

bk t̄
N
k , (26)

where α2 and λ are some real numbers, and z̄N2 =
∑4

k=1[α2hk − (λak + bk)βk]X
N
k + α2Z

N
r is the equivalent

noise while decoding the integer combination
∑4

k=1 bk t̄
N
k . We

obtain the following rate for decoding this integer combination

Rk2|a ≤ max

(

max
α2,λ

0.5 log
βkP

N2(α2, λ)
, 0

)

, (27)

where N2(α2, λ) is the variance of z̄N2 which is given by

N2(α2, λ) =
4

∑

k=1

(α2hk − (λak + bk)βk)
2P + α2

2. (28)

The maximum rate in (27) is attained when N2 is given by

N2(α
∗
2, λ

∗) = b̂T b̂P − 0.25qTAq, (29)

where b̂ = [β1b1, .., β4b4]
T , qT =

[

−2hT b̂P 2b̂T b̂P
]

, and

A =

[

1 + hThP −hT âP
−hT âP âT âP

]

. The details of the optimization

over α1, α2 and λ are straight forward and thus here omitted.

In our achievability scheme, we choose a, b from the
set {[1, 0, 1, 0]T , [0, 1, 0, 1]T , [1, 1, 1, 1]T } and a 6= b. This
choice ensures that after successful decoding of the two integer

combinations
∑4

k=1 ak t̄
N
k and

∑4
k=1 bk t̄

N
k , the relay can get

t̄N1 + t̄N3 and t̄N2 + t̄N4 that will be transmitted to nodes 3 and
4 over the second phase.

Note that the achievable transmission rate of t̄Nk is restricted
by the rates of combinations that have a non-zero coefficient of
t̄Nk [13]. This results in the following achievable transmission
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rate region for t̄N1 and t̄N2 .

R1
1 ≤







R11 if a1 = 1 and b1 = 0,

R12|a if a1 = 0 and b1 = 1,

min(R11, R12|a) if a1 = 1 and b1 = 1,

(30)

R1
2 ≤







R21 if a2 = 1 and b2 = 0,

R22|a if a2 = 0 and b2 = 1,

min(R21, R22|a) if a2 = 1 and b2 = 1.

(31)

B. The second phase

After obtaining the desired two integer combinations, the
relay encodes each of them into a Gaussian codeword and
forwards them to nodes 3 and 4. More specifically, the lin-
ear combination t̄N1 + t̄N3 is encoded into a codeword Xm

r3
from a Gaussian codebook randomly generated according to
N (0, ζ3Pr), and the linear combination t̄N2 + t̄N4 is encoded
into a codeword Xm

r4 from a Gaussian codebook randomly
generated according to N (0, ζ4Pr), where ζ3+ ζ4 ∈ [0, 1] and
ζ3, ζ4 ≥ 0. The relay transmits the signal Xm

r = Xm
r3 +Xm

r4.

Decoding at destinations: The channel from the relay to
nodes 3 and 4 is a two-user broadcast channel. The weaker
receiver (i), i.e., gi ≤ gj , i, j ∈ {3, 4}, decodes its desired
signal Xm

ri and treats Xm
rj as noise. The stronger receiver (j),

decodes Xm
ri first and then applies successive cancellation and

decodes Xm
rj . The achievable rate region during the second

phase is thus given by

R2
i ≤ C

(

ζigiPr

1 + ζjgiPr

)

, R2
j ≤ C(ζjgjPr), (32)

where C(x) = 0.5 log2(1 + x).

Note that there is one-to-one mapping between t̄Nk and tNk
given the knowledge of the dither vectors dNk [13]. Therefore,
with the knowledge of its jamming signal and the received
combination, each of nodes 3 and 4 is able to decode its desired
message.

Consequently, we can state the following theorem that
represents the main result of this paper.

Theorem 1 The following secure rate region is achievable for
two-user interference untrusted-relay channel with confidential
messages

max
β,η,a,b,ζ3,ζ4

{

R1 ≤ min(η[R1
1 − 1]+, (1− η)R2

3)

R2 ≤ min(η[R1
2 − 1]+, (1− η)R2

4)

}

. (33)

The proof of this theorem is completed in Section IV.

Observe that the achievability uses both structured and
Gaussian signaling. In particular, the sources, nodes 1 and 2,
and destinations, nodes 3 and 4, use nested lattice codebooks
for sending the confidential messages and jamming, respec-
tively, while the relay node uses a Gaussian codebooks to
forward its signals to both destinations.

Remark 1 Note that imposing secrecy constraints at the relay
node results in the loss of 1 bit/channel use from the achievable

transmission rate R1
k, this 1 represents the bin size of the outer

code that is needed to ensure the secrecy of the confidential
messages at the untrusted relay as will be shown in Section IV.
This means that our achievable scheme incurs a η bits channel
loss as compared to when the relay is trusted, and this secrecy
cost becomes negligible in high SNR.

Remark 2 In our previous work in [10], we provided an outer
bound for the X-channel with private and common messages
and untrusted relay. In developing this outer bound, we only
considered the eavesdropper associated with the relay node. It
is worth mentioning that this outer bound is applicable -albeit
loose- for the model considered in this paper, as removing the
eavesdroppers associated with the destinations cannot reduce
the secure rate. Also, note that any outer bound that is obtained
on 1

nH(W1|Y n
r ) is also an outer bound on 1

nH(W1|Y n
r ,W2)

as conditioning cannot increase the entropy.

IV. EQUIVOCATION ANALYSIS

In this section, we complete the proof of Theorem 1 by
calculating the equivocation rates obtained by our achievable
scheme. To do this, first we recall some results that are used
throughout the equivocation calculations.

Lemma 1 Crypto lemma [15]: Let tA, tB be two independent
random variables distributed over compact abelian group and
tB has a uniform distribution, then tA ⊕ tB is independent
from tA.

Theorem 2 The representation theorem [16]: Assume
tN1 ,tN2 ,..,tNK are K vectors taken from V(Λ). There exist an

integer T , such that 1 ≤ T ≤ KN ,
∑K

k=1 t
N
k is uniquely

determined by {T,∑K
k=1 t

N
k mod Λ}.

Lemma 2 [17] For random variables A and B, and discrete
random variable T , we have H(A|B, T ) ≥ H(A|B)−H(T ).

In the following, to simplify the notation, we omit the con-
ditioning on the dither vectors, scaling factors βk’s and the
channel gains as they are assumed to be known at all network
nodes.

A. At the untrusted relay

Here, we focus on the equivocation at the untrusted relay.

H(tN1 |Y n
r ,W2)

≥ H(tN1 |Y n
r , Zn

r , X
n
2 , X

n
4 ,W2) (34)

= H(tN1 |XN
1 +XN

3 ) (35)

= H(tN1 |XN
1 +XN

3 mod Λ1/β1, T1) (36)

= H(tN1 |tN1 /β1 + tN3 /β1 mod Λ1/β1, T1) (37)

≥ H(tN1 |tN1 /β1 + tN3 /β1 mod Λ1/β1)−H(T1) (38)

≥ H(tN1 )−H(T1) (39)

≥ H(tN1 )−N. (40)

The steps (36) and (40) follow from applying the represen-
tation theorem for K = 2, where T1 is an integer such that
1 ≤ T1 ≤ 2N , while the step (38) results by applying Lemma
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2. The step (39) is due to the crypto lemma. Finally, from (40),
we obtain

1

N
I(tN1 ;Y n

r ,W2) ≤ 1. (41)

Similarly, we can obtain the following for tN2

1

N
I(tN2 ;Y n

r ,W1) ≤ 1. (42)

The above results indicate that the leaked information about
the value of tN1 (tN2 ) to the eavesdropper associated with the
relay node cannot exceed 1 bit per channel use, therefore by
using stochastic encoding we can ensure the secrecy of the
confidential message at the untrusted relay and achieve the
rate expression in Theorem 1.

Remark 3 Note that the secrecy constraints in (8) implies that
1
nI(W1,W2;Y

n
r ) → 0 as n → ∞, since

I(W1,W2;Y
n
r ) = I(W1;Y

n
r ) + I(W2;Y

n
r |W1) (43)

= H(W1)−H(W1|Y n
r ) + I(W2;Y

n
r |W1) (44)

≤ H(W1|W2)−H(W1|W2, Y
n
r ) + I(W2;Y

n
r |W1) (45)

= I(W1;Y
n
r |W2) + I(W2;Y

n
r |W1). (46)

(45) follows from the independence of W1 and W2, and the
fact that conditioning cannot increase the entropy.

B. At the destinations

In this subsection, we focus on the equivocation analysis
of the confidential messages at the destinations.

H(W1|Y n
2 , Xn

4 ,W2) ≥ H(W1|Y n
2 , Xn

4 ,W2, X
m
r2, Z

m
2 )

= H(W1|Xm
r1) = H(W1). (47)

The last step follows from the crypto lemma, i.e., Xm
r1 and t̄N1

are independent. Similarly, we can get

H(W2|Y n
1 , Xn

3 ,W1) ≥ H(W2). (48)

Remark 4 The achievable scheme ensures the secrecy of the
confidential messages from any external eavesdropper that
can overhear the relay signal during the second phase. This
observation illustrates how our scheme utilizes the untrusted
relay as an encryption block.

V. CONCLUSIONS

In this work, we have demonstrated the possibility of
securing confidential messages using an untrusted relay. In
particular, we have studied two-user two-hop interference relay
channel, where each source aims to communicate securely with
its intended receiver while protecting its message from the
untrusted relay and the other destination. We have defined an
achievable rate region using a combination of nested lattice
code and stochastic encoding at the sources with the help of
structured jamming from the destinations. The relay is required
to decode two different integer combinations of the four
received lattice points and forwards them to both destinations.
By using structured signals during the first phase and requiring
the untrusted relay to decode specific integer combinations of
these signals then forwarding them as Gaussian signals during
the second phase, our proposed achievability technique utilizes
the untrusted relay as an encryption block in the network.

It is worth noting that this achievability scheme can be
extended to the K-user interference relay channel with con-
fidential messages and untrusted relay, where K > 2. The
transmitted signals from the sources and destinations follow
the same procedure. The relay would have to be required to
decode K different integer combinations of the received lattice
points. The relay would perform noise prediction as in [13] to
decode the K different integer combinations.

It is also worth noting that we assumed a model where
the relay, despite of being untrusted, conforms to the network
protocols, i.e., is honest but curious, rather than rogue, e.g.,
Byzantine, and the nodes on which secrecy constraints are
imposed do not collude. Future directions include removing
either or both of these assumptions.
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