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Abstract—This paper considers a Gaussian multiple access
channel aided by a relay. Specifically, the relay facilitates com-
munication between multiple sources and a destination to which
the sources have no direct link. In this set up, the relay node
is considered to be untrusted, i.e., honest but curious, from
whom the source messages need to be kept secret. We identify
an achievable secrecy rate region utilizing cooperative jamming
from the destination, and using compress-and-forward at the
relay. Additionally, an outer bound on the secrecy rate region is
derived. Numerical results indicate that the outer bound is tight
in some cases of interest.

I. INTRODUCTION

The broadcast nature of wireless communications enables

transmitted signals to be overheard by unauthorized nodes,

making the medium vulnerable to eavesdropping attacks.

Information theoretic secrecy overcomes this vulnerability

and provides absolute confidentiality with transmission and

network design strategies. The secrecy capacity of a noisy

channel was defined by Wyner [1], where he proved, using

stochastic encoding, the possibility of having confidential data

transmission in the presence of a wiretapper1, if the received

signal at the wiretapper is a degraded version of the one at the

legitimate receiver. This result was extended to general discrete

memoryless channels, where the wiretapper observation is not

necessarily degraded [2].

The past decade has witnessed a significant effort in infor-

mation theoretic secrecy research in a variety of network

models, offering various design insights into the physical

layer, see for example [3]–[13] and many others. Previous

work of particular relevance to the problem studied in this

paper includes the model where multiple sources securely

communicate to a receiver in a Gaussian channel in the

presence of an eavesdropper [3]–[5]. For this, the multiple

access wiretap channel, it has been shown that cooperative

jamming where a transmitter sacrifices its own rate, and instead

uses its resources to judiciously interfere with the wiretapper,

improves the achievable secure sum rate of the system [5].

The impact of confidentiality (secrecy) requirements on

cooperative communications has been studied in various refer-

ences, notably on various channel models where a single legit-

imate transmitter receiver pair communicates through one or

more relay nodes see for example [6], [8]–[11]. In particular,
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and CNS 13-14719.

1The terms ”wiretapper” and ”eavesdropper” are used interchangeably.

the model where a relay node helping in communication while

simultaneously being untrusted with the secret information has

been proposed in [10], [13]. A two-hop scenario where the

untrusted relay is the only means of communicating between

a single source and the destination has been considered in [9].

This paper extends the secure cooperative communications

model in [9] to a scenario where multiple sources wish

to communicate to a destination through an untrusted relay

keeping the messages secret from it. This could be a valid

scenario for instance for the uplink of a dynamic small cell

whose access point is an unauthenticated router, e.g., a device

that forms a hot spot and is willing to relay the signals it

receives to a base station. Modeling this set up as a K-

user multiple access relay channel with no direct link, where

the relay is assumed to be an honest but curious node on

which the secrecy constraints must be imposed, we seek to

understand the end-to-end secure communication rates. We

first define an achievable secure rate region using Gaussian

signaling and compress-and-forward at the relay with the aid

of the cooperative jamming from the destination. Next, we

derive a genie aided outer bound on the secure rate region

by adding a new eavesdropper to the network that has the

same channel statistics of the relay, after which the relay can

be assumed to be trusted. We find that in some scenarios of

interest the bound is tight. We also observe that in this set up,

it is essential to seek the destination node’s help in improving

secrecy, as opposed to a source node to serve as a cooperative

jammer.

The remainder of the paper is organized as follows. Section

II describes the model. Then, an achievable region is provided

in Section III, while we develop the outer bound in Section

IV. Section V provides the numerical results and the related

observations. Section VI summarizes our conclusions.

II. SYSTEM MODEL

We consider a network consisting of K sources, {Sk}
k ∈ {1, 2, . . . ,K} that send messages to the destination (D)

over an untrusted relay (R) as shown in Fig. 1. All nodes are

assumed to operate in half-duplex mode, with communication

taking place over two phases. In the first phase, sources

transmit their signals {Xk} to the relay, and in the second

phase, the relay transmits to the destination. The destination

is assumed to be willing to participate in communication as a

cooperative jammer node in the first phase. More specifically,

during the sources’ transmission to the relay, the destination
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Fig. 1. K-user multiple access channel with untrusted relay.

simultaneously jams the relay with a Gaussian signal (J). The

received signal at the relay in channel use i of the first phase

is given by

Yr(i) =
K
∑

k=1

√

hkXk(i) +
√
gJ(i) + Zr(i) (1)

where
√
hk is the channel gain from user k to the relay node,

and
√
g represents the channel gain between the relay and

the destination. We assume the channel between the relay and

the destination to be reciprocal. Zr is the additive zero mean

Gaussian noise with unit variance. The received signal at D

at the channel use j of the second phase is expressed as

Y (j) =
√
gXr(j) + Z(j) (2)

where Xr is sent from the relay and Z is the additive zero

mean Gaussian noise with unit variance. Define n as the

number of channel uses for the first phase, and m as the

number of channel uses for the second phase. Let N = n+m

be the total number of channel uses. The transmitted signal

from each source has to satisfy the average power constraint

1

N

N
∑

i=1

E[X2
k(i)] ≤ P̄k, k ∈ {1, 2, . . . ,K}. (3)

The jamming signal from the destination, and the transmitted

signal by the relay have the following average power con-

straints

1

N

N
∑

i=1

E[J2(i)] ≤ P̄J and
1

N

N
∑

i=1

E[X2
r (i)] ≤ P̄r. (4)

Define the time sharing parameter of the first phase, i.e., α =
n

n+m
. Since each node remains silent over one of the two

phases, source k, (k = 1, · · · ,K), the destination, and the

relay have the following effective average powers:

Pk =
P̄k

α
, PJ =

P̄J

α
, Pr =

P̄r

1− α
. (5)

Remark 1 Observe that the model is equivalent to the one

with an external jammer, which jams the relay in the first

phase and is heard by the destination over a noiseless link.

Thus, we can consider the received signal at D over the two

phases to be Y = {J(1) · · · J(n), Y (1) · · ·Y (m)}.

Each source Sk wishes to communicate secret message (Wk)

from the set {1, . . . ,Ms
k} to D, while keeping it confidential

from the relay, i.e., we have to have

1

N
H(W s

S |Y n
r ) ≥ 1

N
H(W s

S)− ǫ ∀S (6)

where S ⊆ K, K , {1, 2, . . . ,K} is the set that contains

all source nodes and W
s
S

, {Wk, k = 1, · · · ,K, ∃k ∈
S}. Source Sk encodes the messages into {Xn

k (Wk)} using

(2nRk , n) codebook, where Rk = 1

n
log2 M

s
k . In the remainder

of this paper, H(X) and h(X) represent the entropy and the

differential entropy of the random variable X , respectively.

Also, we use C(x) , 0.5 log2(1 + x), [x]+ = max(0, x) and

XS , {Xk, k = 1, · · · ,K, ∃k ∈ S}. We omit the channel use

index whenever it is clear from the context.

III. ACHIEVABLE SECURE RATE REGION

The key elements of our achievability scheme are random

binning at the sources [12] and compress-and-forward at the

relay [9]. The achievable scheme is described as follows.

1) At the sources: Define Rx
k = 1

n
log2 M

x
k and Mk =

Mx
kM

s
k . The source Sk generates Mk codewords. The compo-

nents of each of them are drawn randomly from N (0, Pk−δk),
where δk is an arbitrary positive number to ensure that the

power constraint is satisfied. Then, Sk randomly distributes

them to Ms
k bins, each of which is indexed by Wk and contains

Mx
k codewords. To transmit a message Wk, the source Sk

uniformly picks a codeword from the bin indexed by Wk, and

transmits the signal Xk.

2) At the relay: The relay compresses the received signal

Yr into a quantized version Ŷr and transmits the correspond-

ing signal Xr. The eavesdropper, associated with the relay,

receives the source signals through a multiple access channel

[4], [5]. It follows from [4], [5], [10], [14] and [15] that the

following region is achievable
∑

k∈S

(Rs
k +Rx

k) ≤ I(XS ;Y, Ŷr|Xr,XSc) (7)

∑

k∈S

Rs
k ≤ [I(XS ;Y, Ŷr|Xr,XSc)− I(XS ;Yr|Xr)]

+ (8)

I(Xr;Y ) ≥ I(Yr; Ŷr|Xr, Y ). (9)

More details for the compress-and-forward scheme and the

decoding at D can be found in [10], [14] and [15].

By evaluating the above secrecy rate region for the Gaussian

case, we get the following theorem.

Theorem 1 The rate region that satisfies the following in-

equalities is achievable for all S ⊆ K, K , {1, . . . ,K}
∑

k∈S

(Rs
k +Rx

k) ≤ αC

(

∑

k∈S hkPk

1 + σ2
Q

)

(10)

∑

k∈S

R
s
k ≤ α

[

C

(

∑

k∈S
hkPk

1 + σ2
Q

)

− C

(

∑

k∈S
hkPk

1 + gPJ +
∑

j∈Sc hjPj

)]+

(11)
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where 0 < α ≤ 1 and ∀α, σ2
Q satisfies

αC

(

1 +
∑K

k=1
hkPk

σ2
Q

)

= (1− α)C (gPr) . (12)

The proof can be found in the appendix.

Remark 2 It can be seen from Theorem 1 that the achievable

rates are proportional to the time sharing factor α. Thus,

the relay should always transmit with its maximum power.

However, it can be readily observed that if
∑K

k hkPk → 0, or

∞, then the secure sum rate will diminish. Thus, the rate is not

monotonically increasing in the total source power,
∑K

k hkPk.

This implies that for a fixed jamming power, we have to find

the optimum value P ∗
T for

∑K

k hkPk, which may require some

users to transmit with less than their maximum power. We will

support this remark with numerical results in Section V.

Remark 3 It is worth mentioning that if Pr → ∞, the optimal

α = 1 and σ2
Q = 0. Hence, we have the following region:

∑

k∈S

(Rs
k +Rx

k) ≤ C

(

∑

k∈S

hkPk

)

(13)

∑

k∈S

Rs
k ≤

[

C

(

∑

k∈S

hkPk

)

− C

(

∑

k∈S
hkPk

1 + gPJ +
∑

j∈Sc hjPj

)]+

.

(14)

Remark 4 There is no need for cooperative jamming from

the source nodes to maximize the achievable secure sum rate.

To prove this, consider the case where each user can divide

its signal into two parts: Xk with power akP̄k for the data

message and Jk with power (1−ak)P̄k for a random jamming

signal to confuse the relay and ak ∈ [0, 1]. Then, we have

K
∑

k=1

RsCJ
k ≤ α

2
log2

(

1 + σ2
Q +

∑K

k=1
hkPk

1 + gPJ +
∑K

k=1
hkPk

·

1 + gPJ +
∑K

k=1
(1− ak)hkPk

1 + σ2
Q +

∑K

k=1
(1− ak)hkPk

)

. (15)

Also, (11) can be expressed as

K
∑

k=1

Rs
k ≤ α

2
log2

(

1 + σ2
Q +

∑K

k=1
hkPk

1 + gPJ +
∑K

k=1
hkPk

· 1 + gPJ

1 + σ2
Q

)

.

(16)

It is clear that the difference between (15) and (16) is in the

second fraction in the log2 function. We can conclude that as

long as 1+ gPJ ≥ 1+σ2
Q the sum rate in (16) is higher than

the one in (15). Observe that this is also the condition for the

achievable secure sum rate to be positive.

IV. OUTER BOUND ON THE SECURE RATE REGION

In this section, we derive an outer bound on the secure rate

region. We use the relay/eavesdropper separation technique

presented in [9]. First, we add an external eavesdropper to our

Fig. 2. An equivalent network used to calculate the outer bound.

network, which has the same channel statistics as the relay.

The received signal at this external eavesdropper is given by

Ye =

K
∑

k=1

√

hkXk +
√
gJ + Ze (17)

where Ze is zero mean Gaussian noise with unit variance and

it is correlated with Zr with a coefficient ρ.

Second, we remove the eavesdropper at the relay, i.e., con-

sider the relay to be trusted, and assume a genie transfers

the jamming signal J from the destination D to the relay.

Moreover, we assume a genie provides Xr to the destination.

In other words, we consider the destination to have Xr, as

shown in Fig. 2. Note that none of the assumptions above

reduce the secrecy rate region of the model. Observe that we

have p(Wk, Y
n
e ) = p(Wk, Y

n
r ). Thus if we guarantee the

secrecy of messages at this additional eavesdropper, they are

kept secret at the relay in the original model.

H(W s
S |Y n

e )

≤ H(W s
S |Y n

e )−H(W s
S |Xn

ScX
m
r Y

m
J
n) + nǫ1 (18)

= H(W s
S |Y n

e )−H(W s

S |Xn
ScX

m
r J

n) + nǫ1 (19)

≤ H(W s
S |Y n

e )−H(W s
S |Xn

ScY
n
r X

m
r J

n) + nǫ1 (20)

= H(W s
S |Y n

e )−H(W s
S |Xn

ScY
n
r J

n) + nǫ1 (21)

= H(W s
S |Y n

e )−H(W s
S |
∑

k∈S

√

hkX
n
k + Z

n
r ) + nǫ1 (22)

≤ H(W s
S |Y n

e )−H(W s
S |
∑

k∈S

√

hkX
n
k + Z

n
r , Y

n
e ) + nǫ1. (23)

Equation (18) follows from Fano’s inequality. Since, Xm
r is

given to the destination, Y m can be removed as is done in
(19). (18)-(21) follow since Jn is provided to the relay. Let
Gn =

∑

k∈S

√
hkX

n
k + Zn

r . We have

I(W s
S ;G

n|Y n
e )

≤ I(W s
S ,X

n
S ;G

n|Y n
e ) (24)

= I(Xn
S ;G

n|Y n
e ) (25)

= h(Gn|Y n
e )− h(Gn|Y n

e ,X
n
S ) (26)

= h(Gn|Y n
e )− h(Zn

r |
∑

k∈Sc

√

hkX
n
k +

√
gJ

n + Z
n
e ) (27)

≤ h(Gn|Y n
e )− h(Zn

r |
∑

k∈Sc

√

hkX
n
k +

√
gJ

n + Z
n
e , J

n) (28)

= h(Gn|Y n
e )− h(Zn

r |
∑

k∈Sc

√

hkX
n
k + Z

n
e ). (29)
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Fig. 3. The secure sum rate vs the transmitted power when Pr → ∞,
PJ = 0.5P1, h1 = h2 = 1 and optimal α.
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Fig. 4. The secure sum rate vs the transmitted power when Pr → ∞,
PJ = 30 dB, h1 = h2 = 1 and optimal α.

(25) results from the fact that W s
S

is determined from X
n
S

.

Now, (29) is maximized when the channel inputs Xn
k ’s and

Jn are i.i.d. Gaussian sequences. Next, we tighten this upper

bound by minimizing it over the correlation coefficient of Zr

and Ze ρ. We can state the following theorem.

Theorem 2 The secure rate region of is upper bounded by

(30).
∑

k∈S

Rs
k ≤ max

0<α<1
min

−1≤ρ≤1
f(α, ρ) (30)

where

f(α, ρ) = min
(α

2
log2(V ), (1− α)C (gPr)

)

(31)

and

V =
[(1 + Ps)(1 + Pt)− (Ps + ρ)2](

∑

k∈Sc hkPk + 1)

[(1 +
∑

k∈Sc hkPk)− ρ2](1 + Pt)
(32)

with Pt =
∑K

k=1
hkPk + gPJ and Ps =

∑

k∈S hkPk.

Remark 5 For K = 1, the analysis above reduces to that of

a single source single destination two-hop network [9].

V. NUMERICAL RESULTS

In this section, we present numerical results to illustrate the

performance of the proposed achievable scheme. We consider

a network with two sources, i.e., K = 2, and focus on the

secure sum rate.
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Fig. 5. The secure sum rate vs the transmitted power when P̄r = 40
dB and P̄J = 30 dB, h1 = h2 = 1 and optimal α.
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Fig. 6. The secure sum rate vs the transmitted power when P̄r = 40
dB and P̄J = 0.5P̄1, h1 = h2 = 1 and optimal α.

In Fig.s 3 and 4, we consider the case where Pr → ∞. If the

jamming power PJ is proportional to P1+P2, we observe that

the secure sum rate is an increasing function in the transmitting

powers, and it approaches ∞ as P1+P2 → ∞, as illustrated in

Fig. 3. Furthermore, the gap between the upper bound and the

achievable secure sum rate converges to zero, as the transmit

powers increase.

On the other hand, if we fix the jamming power PJ when

Pr → ∞, we observe that the secure sum rate increases with

the transmit powers but is bounded, as shown in Fig. 4. From

Fig.s 3 and 4, we can conclude that the upper bound on the

secure sum rate is tight when Pr → ∞.

In Fig.s 5 and 6, we consider the case where the relay power

is limited. It is evident that the achievable secure sum rate is

not an increasing function of the transmit powers when the

jamming power is fixed as shown in Fig. 5. The source powers

need to be chosen so as to yield the maximum of the sum rate

curve. Fig. 6 shows the case where the jamming power is

proportional to the sum of the source powers, we can observe

that in the high power region the upper bound is not tight.

VI. CONCLUSION

We have considered a K-user multiple access relay channel

with no direct link between the sources and the destination.

The relay is considered to be honest but curious and needs to

be treated as an eavesdropper. We have shown that positive se-

cure communication rates are achievable for all sources using
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cooperative random binning at the sources and compress-and-

forward at the relay with the help of a cooperative jamming

from the destination. We have found that the relay and the

destination should operate with maximum power while the

transmitted powers from the sources need to be optimized.

Additionally, we have found an outer bound on the secure rate

region. Future directions include considering untrusted relays

in multicast transmission to multiple (untrusted) destinations.

Recent partial results in this direction can be found in [16].

APPENDIX

Recall that Y = {J(1) · · · J(n), Y (1) · · ·Y (m)}. As in [9],
the input distributions are such that

p(Xn
1 , . . . , X

n
K , J

n
, X

m
r ) = p(Xn

1 ) . . . p(X
n
K)p(Jn)p(Xm

r ). (33)

We calculate the terms in (7)-(9) as follows.

I(Xn
S ;

K
∑

k=1

√

hkX
n
k +

√
gJ

n + Z
n
r |Xm

r ,X
n
S

c)

= I(Xn
S ;
∑

k∈S

√

hkX
n
k +

√
gJ

n + Z
n
r |Xm

r ) (34)

= I(Xn
S ;
∑

k∈S

√

hkX
n
k +

√
gJ

n + Z
n
r ) = nC

(

∑

k∈S
hkPk

1 + gPJ

)

(35)

Next,

I(Xn
S ; J

n
, Y

m
, Ŷr

n|Xm
r ,X

n
Sc)

= I(Xn
S ;Y

m
, Ŷr

n|Xm
r ,X

n
Sc , J

n) + I(Xn
S ; J

n|Xm
r ,XSc)

= I(Xn
S ;Y

m
, Ŷr

n|Xm
r ,X

n
Sc , J

n) (36)

= I(Xn
S ; Ŷr

n|Y m
, X

m
r ,X

n
Sc , J

n) + I(Xn
S ;Y

m|Xm
r ,X

n
Sc , J

n)

= I(Xn
S ; Ŷr

n|Y m
, X

m
r ,X

n
Sc , J

n) + I(Xn
S ;Z

m|Xm
r ,X

n
Sc , J

n)

= I(Xn
S ; Ŷr

n|Y m
, X

m
r ,X

n
Sc , J

n) (37)

= I(Xn
S ;Y

n
r + Z

n
Q|Y m

, X
m
r ,X

n
Sc , J

n) (38)

= I(Xn
S ;

K
∑

k=1

√

hkX
n
k +

√
gJ

n + Z
n
r + Z

n
Q|Xm

r ,X
n
Sc , J

n)

= I(Xn
S ;
∑

k∈S

√

hkX
n
k + Z

n
r + Z

n
Q) = nC

(

∑

k∈S
hkPk

1 + σ2
Q

)

.

(39)

Next, we have

I(Xn
S ;Y

n
r |Xm

r ) = I(Xn
S ;

K
∑

k=1

√

hkX
n
k +

√
gJn + Zn

r |Xm
r )

= I(Xn
S ;

K
∑

k=1

√

hkX
n
k +

√
gJn + Zn

r ) (40)

= nC

(

∑

k∈S hkPk

1 + gPJ +
∑

j∈Sc hjPj

)

. (41)

Then, we have

I(Xm
r ;Y m, Jn) = I(Xm

r ;
√
gXm

r + Zm, Jn)

= I(Xm
r ;

√
gXm

r + Zm) = mC (gPr) . (42)

Finally, we have

I(Y n
r ; Ŷr

n|Xm
r , Y m, Jn)

= I(
K
∑

k=1

√

hkX
n
k +

√
gJn + Zn

r ;

K
∑

k=1

√

hkX
n
k +

√
gJn + Zn

r + Zn
Q|Xm

r , Y m, Jn)

= I(
K
∑

k=1

√

hkX
n
k + Zn

r ;
K
∑

k=1

√

hkX
n
k + Zn

r + Zn
Q) (43)

= nC

(

1 +
∑K

k=1
hkPk

σ2
Q

)

. (44)

Equations (35), (36), (37), (39), (40) and (43) follow from the

condition of independence on the channel inputs in (33) and

the noise signals, while (35), (39), (41), (42) and (44) result

from considering i.i.d. Gaussian signals.

Substituting these quantities in (7)-(9), and dividing both

sides by n+m = N an taking the limit as N → ∞, we get

the achievable region stated in Theorem 1.
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