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Abstract—We consider the wiretap channel when a (secure)
cache memory is added to the legitimate receiver. With the
goal of utilizing coded caching for improving secrecy, during
the cache placement phase, the receiver caches a function of
the files, and the secret key shared with the transmitter subject
to the memory constraint. The signals transmitted to serve the
receiver’s request during the delivery phase are observed by an
eavesdropper over a wiretap channel. We characterize the secrecy
capacity of the wiretap channel with a cache, i.e., the maximum
achievable file size while keeping the overall database secure,
for both the discrete memoryless and the Gaussian channels.
The optimal caching scheme maximizes the utilization from the
transmission over the delivery phase by sharing sufficient amount
of keys between the legitimate communication nodes during the
placement phase. Interestingly, we demonstrate that the existence
of cache memory is an enabler of secure communication, i.e., the
secrecy capacity remains positive, even when the main channel
is degraded with respect to the eavesdropper channel.

I. INTRODUCTION

The wiretap channel introduced by Wyner in [1] has
provided the foundation for information theoretically secure
communication in the presence of an eavesdropper. In addition
to a number of extensions and generalizations in the single user
setting [2]–[8], multi-terminal wiretap channels have also been
investigated extensively to date, see for example [9]–[15].

In this work, we consider the single user wiretap channel
when a cache memory is added to the legitimate receiver.
The goal of utilizing the cache at the receiver is to improve
the secrecy capacity of the channel. We demonstrate that the
secrecy capacity is improved with this additional resource,
and that in instances where the wiretap channel is reversely
degraded where secure communication is otherwise impossi-
ble, the existence of this additional resource enables a non-
zero secrecy capacity. The model is in line with the recently
introduced coded caching paradigm [16], and imposes the
secure delivery constraint studied for multireceiver channels
in recent references [17]–[20]. Unlike the coded caching
references to date where the primary objective is to provide
improvement by means of multicasting in broadcast or other
multireceiver set ups, in this work, the primary utilization
of the cache memory at the single receiver is as a resource
for secure communication, i.e., one that increases the secrecy
capacity of the channel.

We establish the secrecy capacity of the discrete memoryless
wiretap channel as a function of the memory constraint and

as a corollary the secrecy capacity of the Gaussian wiretap
channel under the same memory model.

In line with recent information theoretic models of caching,
the transmitter has access to a data base of files (messages) any
one of which may be requested by the receiver. The system
operates over two phases: a secure cache placement phase and
delivery phase over a wiretap channel. In particular, during the
cache placement phase, the receiver populates its cache with a
function of the database files as well as keys shared with the
transmitter subject to the memory capacity constraint. When
the receiver requests a file, the delivery phase occurs over a
wiretap channel. All database files, i.e., all messages must be
kept secret from the wiretapper.

The fundamental gains transpire in this model due to the
presence of the secure cache. We characterize the optimal
caching and delivery strategies which maximize the achiev-
able file size, while satisfying the secrecy constraint. We
characterize the capacity of this setting, both for discrete
memoryless and Gaussian wiretap channels, by defining the
optimal memory partitioning between cached data and shared
keys and the optimal delivery policy. The secrecy capacity is
piece-wise linear in the cache size. As long as the cache size is
less than the minimum of the main channel and the wiretapper
channel capacities, the linear scaling factor is unity, while after
that point, the scaling factor is normalized by the number of
database files. The learned insights from this study include
prioritizing keys during the cache placement: for example,
whenever the cache size is less than the minimum between the
main channel and the wiretapper channel capacities, the cache
is dedicated to storing keys only. In addition, when the main
channel is degraded with respect to the wiretapper channel, the
cache acts as an enabler of communication, in other words the
cache facilitates non-zero secrecy rates over this channel.

II. SYSTEM MODEL

Consider the wiretap channel with a cache memory at the
legitimate receiver, shown in Fig. 1. The transmitter has a
library of D files, W1, ..,WD, each of which has size nR bits.
The files are independent and uniformly distributed over the
set {1, .., 2nR}. The receiver is equipped with a cache memory
of size nM bits. The system operates over two phases.

A. Cache Placement Phase
The cache placement is assumed to be error free and secure

from wiretapper. The transmitter populates the receiver’s cache
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Fig. 1: The wiretap channel with receiver’s cache.

with a function of the library files and a shared key. Let MD

represent the fraction of the memory dedicated to store data
and MK be fraction dedicated for the shared key. The cache
at the legitimate receiver stores

SnD = µ(W1, ..,WD), H(SnD) = nMD. (1)

The transmitter generates a secure random key, K, that is inde-
pendent from the files {W1, ..,WD} and uniformly distributed
over the set {1, .., 2nMK}. We denote all cached contents by
the receiver by Sn.The system designs the cached content
subject to the memory capacity constraint. Thus, we have

H(Sn) = H(SnD,K) = nMD + nMK ≤ nM. (2)

B. Delivery Phase

The receiver requests one of the database files at random
[16], i.e., the demand profile is assumed to be uniform. We
denote the requested file by Wd. The transmitter responds to
this request by sending a signal over a discrete memoryless
wiretap channel [2], described by

P (Y n=yn, Zn=zn|Xn=xn)

=
n∏
i=1

P (Yi=yi, Zi=zi|Xi=xi), (3)

where n is the number of channel uses, Xi ∈ X is the channel
input, Yi ∈ Y and Zi ∈ Z are the channel outputs at channel
use i at the legitimate receiver and the wiretapper, respectively.
In particular, the transmitter encodes the requested file and the
shared key using stochastic encoding [1] into the signal Xn.
Equivalently, we have

Xn = φ(Wd,K,K
′), (4)

where K ′ is the local randomness at the transmitter. Using
Y n and the cached contents, the receiver must be able to
decode its requested file reliably, i.e., for the decoded file
Ŵd = λ(Y n, Sn), for any δ > 0, we have

P (Ŵd 6=Wd) < δ. (5)

Since any file from the database can be requested in the
delivery phase, all files need to be kept secret from the
wiretapper [17]–[20]. Thus, for any ε > 0, we have the
following secrecy constraint.

H(W1, ..,WD|Zn) ≥ H(W1, ..,WD)− nε. (6)

The rate-memory tuple (R,M) is said to be achievable, if for
n→∞, there exist a caching function, µ, a shared key K,
an encoding function, φ, and a decoding function, λ, such
that for any ε, δ > 0 conditions (5) and (6) are satisfied.
Furthermore, the secrecy capacity of the considered wiretap
channel is defined as sup{(R,M) : (R,M) is achievable}.

III. MAIN RESULT

Theorem 1. The secrecy capacity of the wiretap channel with
a cache with total memory M is given by

R = max
MD+MK≤M

max
U−V−X−(Y,Z)

min([I(Y ;V |U)−I(V ;Z|U)]++MK , I(V ;Y ))+
MD

D
, (7)

for some random variables U and V .

We observe that the outer maximization in (7) maximizes
the sum of two terms. The first term represents the capacity
of wiretap channel with shared key of size nMK bits like in
[8]. The second term represents the data caching gain, i.e., the
fraction of the memory dedicated to store the bits of each of
the D files. For the degraded wiretap channel [1], the corollary
below immediately follows; we will use it in Section V.

Corollary 1. The capacity of a degraded wiretap channel with
cache, i.e., X − Y − Z, is given by

R = max
MD+MK≤M

max
X−Y−Z

min(I(X;Y ) +MK − I(X;Z), I(X;Y )) +
MD

D
. (8)

�

IV. PROOF OF THEOREM 1

A. Achievability

First, we show the achievability of the file size given in
Theorem 1. For a fixed choice of the parameters MD and
MK , we show the achievability of the following file size:

R = max
U−V−X−(Y,Z)

min([I(V ;Y |U)−I(V ;Z|U)]++MK , I(V ;Y ))+
MD

D
. (9)

During the placement phase, we divide each file Wi into two
subfiles, W c

i , and W t
i . W c

i has length equal to nMD

D bits and
will be cached by the receiver. W t

i with length n(R−MD

D ) bits
is only known at the transmitter during this phase. In addition,
the transmitter generates random key, K, with length nMK

bits, that is uniformly distributed over the set {1, .., 2nMK}
and places it in the cache memory of the receiver. Thus, the
number of bits cached by the receiver is D|W c

i | + |K| =
nDMD

D +nMK ≤ nM , i.e., the memory constraint is satisfied.
At the beginning of the delivery phase, the receiver requests

Wd. The subfile W c
d can be retrieved from the receiver’s cache,

while the subfile W t
d needs to be transmitted securely over the

wiretap channel. The transmission over the wiretap channel
follows the techniques for a wiretap channel with shared key of
length nMK bits [8]. The size of the key and the degradedness
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of the channel determine the optimal utilization of the key:
either we use it as a randomization index in the codebook, or
as a one-time pad [21], to satisfy the secrecy constraint (6).
B. Converse

To prove the converse, first we fix a partitioning of the cache
memory, i.e., MD and MK . Suppose that the receiver requests
the file Wj . Then, we have the following lemma.

Lemma 1. For a fixed choice of MD and MK , the achievable
file size is upper bounded by

R ≤ min([I(Y ;V |U)− I(V ;Z|U)]+ +MK , I(V ;Y ))

+
1

n
I(SnD;Wj), (10)

for some random variables U and V such that U−V −X−
(Y,Z).

Proof. Proof is provided in the Appendix.
By averaging over all possible file requests, we obtain

R ≤ min([I(Y ;V |U)− I(V ;Z|U)]+ +MK , I(V ;Y ))

+
1

D

D∑
i=1

1

n
I(SnD;Wi). (11)

In addition, we have
D∑
i=1

I(SnD;Wi) =

D∑
i=1

H(Wi)−H(Wi|SnD) (12)

≤
D∑
i=1

H(Wi|W1, ..,Wi−1)−H(Wi|SnDW1, ..,Wi−1) (13)

=
D∑
i=1

I(Wi, S
n
D|W1, ..,Wi−1) (14)

= I(W1, ...,WD;S
n
D) ≤ H(SnD) = nMD. (15)

Finally, we maximize the obtained bound over all possible
memory partitions, which yields (7), concluding the converse.

V. THE GAUSSIAN WIRETAP CHANNEL WITH A CACHE

In this section, we consider the wiretap channel with a
cache, with the same placement model and the delivery phase
is performed over a Gaussian wiretap channel. At the ith
channel use, the legitimate receiver and the wiretapper receive

Y (i) = X(i) +N1(i), Z(i) = X(i) +N2(i), (16)

where N1 and N2 are the additive white Gaussian noise with
zero-mean and variances σ2

1 and σ2
2 , respectively. The average

power constraint is P . From Corollary 1, following the same
arguments as in [7], and by choosing X to be Gaussian with
zero-mean and variance P , we obtain the following.

Corollary 2. The capacity of the Gaussian wiretap channel
with a cache is given by

R = max
MD+MK≤M

min([CM − CE ]++MK , CM )+
MD

D
, (17)

where CM = 1
2 log2(1 +

P
σ2
1
) and CE = 1

2 log2(1 +
P
σ2
2
). �

Next, we present the optimal caching scheme.

A. CM ≤ CE
Without the cache memory, the secrecy capacity of this

channel is 0 [3].
1) M ≤ CM : Suppose the receiver is equipped with a

cache memory with size 0 < nM ≤ nCM bits. If we
dedicate the cache for storing data only, the file size that we
can achieve is nM

D bits due to the local caching gain only,
as there is no possibility of secure transmission during the
delivery phase. However, if the transmitter generates a random
key, K, of size nM bits to be cached by the receiver during
the placement phase, during the delivery phase, assuming the
receiver requests Wj , the transmitter can encrypt Wj with K
as one-time pad [21] and send it over the channel. Thus, we
can achieve a file size equal to nM bits, which is optimal, from
Corollary 2. In this scenario, caching a key is the enabler of
secure communication over this wiretap channel during the
delivery phase.

2) M > CM : In this case, we choose MK = CM to store
a key, K, of size nCM bits while the remaining memory is
divided equally to cache bits from each file. In particular, each
file, Wn is divided into W t

n with size nCM bits and W c
n of

size nM−CM

D bits. In addition to the cached key, the receiver
caches the subfiles {W c

n,∀n}. During the delivery phase, the
transmitter encodes W t

d ⊕ K and sends it over the channel.
Thus, whenever CM ≤CE , we achieve the following file size

R =

{
M, if M ≤ CM ,
CM + M

D −
CM

D , if M > CM .
(18)

B. CM > CE
Without the cache, the secrecy capacity is CM − CE [3].
1) M ≤ CE: If we cache only files, the gain we obtain is

normalized by the library size D. For example, by caching a
fraction M

D from each file and transmitting the missing bits of
the requested file using a wiretap code [3], we can achieve

R = CM − CE +
M

D
. (19)

Instead, in our scheme, the receiver caches a key, K, of size
nM bits, to be used as a randomization index in the codebook
used to transmit the requested file to the receiver during the
delivery phase. In particular, we generate 2nM codebooks,
each of which is indexed by a possible realization of the key
and has 2nCM codewords. We partition each codebook into
2nR equal-size bins each of which is indexed by a possible
realization of a file. When the receiver requests the file Wd,
from the codebook indexed by K, the transmitter randomly
picks a codeword from the bin indexed by Wd and transmits
it over the channel. Since the codebook index is cached by the
receiver, we can securely achieve

R = CM − CE +M. (20)

Clearly, (20) is larger than (19) for all D > 1.
2) M > CE: In this case, the receiver caches a key, K, of

size nCE bits and nM−CE

D bits from each file. In particular,
Wn is divided into W t

n of size nCM bits and W c
n of size
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Fig. 2: File size of Gaussian wiretap channel with a cache.

nM−CE

D bits to be cached by the receiver. During the delivery
phase, K is used as a randomization index in the codebook
used to transmit W t

d [7], [8]. Therefore, the following file size
is achievable, whenever CM > CE ,

R =

{
CM − CE +M, if M ≤ CE ,
CM + M

D −
CE

D , if M > CE .
(21)

Consequently, we get the following proposition about the
optimal file size for the Gaussian wiretap channel with a cache.

Proposition 1. For a Gaussian wiretap channel with a cache
of size M , the optimal file size is given by

R=

{
[CM − CE ]+ +M, if M≤min(CM ,CE),

CM+M
D −

min(CM ,CE)
D , if M>min(CM ,CE).

(22)

�
VI. DISCUSSION

In this section, we discuss the learned insights from this
study. For simplicity, we focus on the Gaussian setting, noting
that the insights are valid for the discrete memoryless channel.

A. Caching Gain

Observe from (22), illustrated in Fig. 2, that the file size, R,
is a piece-wise linear function of the cache memory size, M . In
particular, R scales with factor 1 in the small memory regime,
i.e., M ≤ min(CM , CE), where the cache is exclusively
dedicated for storing keys. On the other hand, in the large
memory regime, whenever M > min(CM , CE), the gain from
the memory is scaled by 1

D , where the memory is divided
between storing keys and the data files.

B. Secrecy Cost

Without the secrecy requirement, the capacity of a point-to-
point channel with a cache of size M is CM + M

D . Under the
secrecy requirement and as long as M > min(CM , CE), the
capacity of the channel isCM+M

D −
min(CM ,CE)

D . Thus, we can
consider the term min(CM ,CE)

D as the cost due to imposing the
secrecy requirement on the system. In this case, we dedicate
nmin(CM , CE) bits from the cache to store a key to facilitate
the secure transmission with the main channel capacity, CM
during the delivery phase.

When CE < CM , without the cache, the secrecy cost is CE
[3]. As evident from (21), the presence of the cache helps on
reducing the secrecy cost to CE

D . Therefore, caching not only
aids the system in satisfying the secrecy constraint but also
allows reducing the cost due to the secrecy requirement.

When CM ≤ CE , the cache is the enabler of communication
as without it the secrecy capacity is 0 [3].

C. Intuition Behind the Optimal Scheme

For the small memory regime, the optimal scheme dedicates
all the cache memory to storing secure shared keys. In other
words, the optimal scheme prioritizes keys over files, subject
to the memory constraint, until the transmitter is able to
fully utilize the channel during the delivery phase. After that
we start caching from the database files. That is, the gain
from transmitting during the delivery phase contributes to the
number of retrieved bits from the requested file only, while
the partition of the memory dedicated for caching data is
distributed among all the database files.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have introduced the wiretap channel with
a cache and derived its secrecy capacity. During the cache
placement phase, in addition to caching data, the transmitter
can share a secure key with the receiver subject to the
memory capacity constraint. The delivery phase takes place
over a wiretap channel. We have characterized the maximum
achievable file size by defining the optimal caching strategy
and transmission technique. In the small cache region, the
cache is dedicated to storing keys. In the large cache regime,
caching helps in reducing the secrecy rate cost of the system
by normalizing it by the number of files. In addition, the
utilization of the cache renders secure communication possible
even when the legitimate channel is degraded with respect to
the wiretapper.

This work takes the position of utilizing receiver cache
memory as a resource to improve secrecy. Natural next steps
include multi-transmitter settings where channel based tech-
niques can be synergistically utilized with caching.

APPENDIX
PROOF OF LEMMA 1

The proof of Lemma 1 generalizes the converse proof in
[8]. First, from reference [22], we have the following

H(Y n)−H(Zn) =
n∑
i=1

H(Yi|Y i−1Zni+1)−H(Zi|Y i−1Zni+1), (23)

H(Y n|WjS
n)−H(Zn|WjS

n) =
n∑
i=1

H(Yi|Y i−1Zni+1WjS
n)−H(Zi|Y i−1Zni+1WjS

n). (24)

Define Ui = (Y i−1, Zni+1), and Q as a time sharing random
variable that is uniform over {1, ..n} that is independent from
all other random variables. In addition, let U = (Ui, Q), V =
(U,Wj , S

n), X = XQ, Y = YQ and Z = ZQ. Observe that
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U −V −X− (Y,Z). From reference [22], we know that there
exist real numbers t1 and t2 such that

1

n
H(Y n) = H(Y |U) + t1, (25)

1

n
H(Zn) = H(Z|U) + t1, (26)

1

n
H(Y n|Wj , S

n) = H(Y |V ) + t2, (27)

1

n
H(Zn|Wj , S

n) = H(Z|V ) + t2, (28)

where 0 ≤ t1 ≤ min(I(U ;Y ), I(U ;Z)), (29)
0 ≤ t2 ≤ min(I(V ;Y ), I(V ;Z)). (30)

From the secrecy constraint, (6), we have

nε ≥ I(W1, ..,WD;Z
n) ≥ I(Wj ;Z

n)

= I(WjS
n;Zn)− I(Sn;Zn|Wj) (31)

= I(WjS
n;Zn)−I(K;Zn|Wj)−I(SnD;Zn|WjK) (32)

= H(Zn)−H(Zn|WjS
n)−H(K|Wj)+H(K|WjZ

n)

−H(SnD|WjK) +H(SnD|WjKZ
n) (33)

≥ H(Zn)−H(Zn|WjS
n)−H(K)

−H(SnD|WjK) +H(SnD|WjKZ
n) (34)

= H(Zn)−H(Zn|WjS
n)−H(K)

−H(SnD|WjKK
′) +H(SnD|WjKZ

n) (35)
≥ H(Zn)−H(Zn|WjS

n)−H(K)

−H(SnD|WjKK
′) +H(SnD|WjKK

′Zn) (36)
= H(Zn)−H(Zn|WjS

n)−H(K)

−H(SnD|WjKK
′Xn) +H(SnD|WjKK

′Zn) (37)
≥ H(Zn)−H(Zn|WjS

n)−H(K)

−H(SnD|WjKK
′Xn)+H(SnD|WjKK

′XnZn) (38)
= H(Zn)−H(Zn|WjS

n)−H(K)

− I(SnD;Zn|WjKK
′Xn) (39)

= H(Zn)−H(Zn|WjS
n)−H(K). (40)

Step (35) follows from the independence between SnD and
K ′. Steps (36) and (38) are due to the fact that conditioning
cannot increase the entropy. (37) follows from (4). Finally,
(40) follows from the fact that (Wj ,K,K

′, SnD)−Xn − Zn.
Thus, we have

nε ≥ nH(Z|U) + nt1 − nH(Z|V )− nt2 − nMK , (41)

t1 − t2 ≤MK − I(Z;V |U) + ε, (42)

t1 − t2 ≤ t1 ≤ min(I(U ;Y ), I(U ;Z)). (43)

Therefore, we get

t1−t2 ≤ min(MK−I(Z;V |U)+ε, I(U ;Y ), I(U ;Z)). (44)

Now, from the reliability requirement in (5), we have

H(Wj) = H(Wj |K) (45)
≤ H(Wj |K)−H(Wj |Y n, SnDK) + nδ (46)
= I(Wj ;S

n
DY

n|K) + nδ (47)

≤ I(WjK;SnY n) + nδ (48)
= I(WjK;SnD) + I(WjK;Y n|SnD) + nδ (49)
= H(SnD)−H(SnD|WjK) +H(Y n|SnD)

−H(Y n|SnDWjK) + nδ (50)
≤ H(SnD)−H(SnD|Wj)+H(Y n)−H(Y n|SnDWjK) + nδ

(51)
= I(SnD;Wj)+n(H(Y |U)+t1−H(Y |V )−t2)+nδ (52)
≤ I(SnD;Wj) + n(I(Y ;V |U) + t1 − t2) + nδ. (53)

Putting these all together, we get (11).
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