
Fundamental Limits of Secure Device-to-Device
Coded Caching

Ahmed A. Zewail and Aylin Yener

Wireless Communications and Networking Laboratory (WCAN)

The School of Electrical Engineering and Computer Science

The Pennsylvania State University, University Park, PA 16802.

zewail@psu.edu yener@engr.psu.edu

Abstract—We consider a device-to-device coded caching sys-
tem, where each user is guaranteed recover its requested file
and is simultaneously prevented from recovering any file it
did not request. We jointly optimize the cache placement and
delivery policies such that a set of end users are able to satisfy
their requests while preserving the confidentiality constraints.
We develop an upper bound utilizing secret sharing schemes
and one-time pad keying as well as a lower bound on the
required transmission rate. Numerical results indicate that the
gap between the bounds vanishes with increasing memory size.

I. INTRODUCTION

Caching is an effective technique to alleviate congestion in

communication networks during peak traffic times. Caching is

implemented in two phases. First, functions of data contents

are stored in cache memories of the users during the low

traffic period, known as the cache placement phase. When

the users actually request the files, there is then no need to

download the contents that have already been placed in the

user’s cache. Additionally, the cache contents allow the system

to create multicast opportunities, known as the global caching

gain, during the delivery phase. References [1] and [2] have

characterized the fundamental limits of caching establishing

the trade-off between the cache size and the transmission

rate needed to satisfy the users’ requests, known as the rate-

memory trade-off.

Device-to-device (D2D) communications is considered a

promising paradigm for the evolving 5G architecture [3].

Instead of routing data via the network infrastructure, D2D

communication invokes the radio technology that enables

devices to communicate directly with each other. As the user

demand for high data rate services, such as video streaming,

continues to grow, D2D communications is expected to be de-

ployed pervasively, improving spectral efficiency, throughput,

energy efficiency, and delay performance of the network [4].

Recently, references [5] and [6] have studied a cache-

aided network under confidentiality constraints. In particular,

reference [5] has considered a network where a single server,

with N files, each with size F bits, connected to K users, each

equipped with a cache memory of size MF bits, via a noise-

less link, with the requirement that each user recovers only its

This work was supported in part by the National Science Foundation Grants
CCF 13-19338 and CNS 13-14719.

requested file and none of the remaining files. Additionally,

references [7] and [8] have studied the fundamental limits of

caching with the confidentiality requirement that any external

eavesdropper that overhears the transmitted signals during the

delivery phase should not gain any information about the data

in the system, known as secure delivery.

In this work, we investigate the fundamental limits of secure

coded caching in device-to-device (D2D) networks. Unlike

previous work in [5], the server does not participate in the

delivery phase, and users’ requests must be satisfied via D2D

communications only. Consequently, we reduce the load on

the main server, which is a worthy objective as advocated in

references [2]–[4]. The system operates over two successive

phases. First, in the cache placement phase, the server stores

functions of the N files in the users’ cache. Second, in the

delivery phase, each user requests one of the N files, and

advertises its request to all network users. After obtaining

the requests of all network users, each user utilizes its cache

to transmit a signal that helps the other users satisfy their

requests; the server remains silent over this phase. At the end

of the delivery phase, each user is guaranteed to be able to

reconstruct its requested file from the content of its cache

and the received signals from the remaining K− 1 users,

and simultaneously must be prevented from obtaining any

information about the remaining N−1 files. This model can

capture a scenario, where the users have a subscription service

where each of them can request limited content in a given time

frame, e.g., per day.

For this D2D model, we derive lower and upper bounds

on the rate-memory trade-off. To obtain the upper bound, we

jointly optimize the cache placement and delivery phases. The

server encodes each file using secret sharing schemes, and

generates a set of random keys. The server places these file

shares and keys in the cache memories of the users. For a file

W with size F bits, an (m,n) secret sharing scheme generates

n shares, S1, S2, ..Sn, such that accessing any m shares does

not reveal any information about W , i.e.,

I(W ;S) = 0, ∀S ⊆ {S1, S2, ..Sn}, |S| ≤ m. (1)

Furthermore, W can be reconstructed from n shares, i.e.,

H(W |S1, S2, .., Sn) = 0. (2)

Fig. 1: Device-to-device coded caching system, with K = 4.

For large enough F , an (m,n) secret sharing scheme exists

with shares of size equal to F
n−m bits [9].

The lower bound is developed based on cut-set arguments.

Our numerical results demonstrate that the gap between the

lower and upper bounds vanishes as the memory size in-

creases, and for systems with realistic parameters, the lower

and upper bounds are observed to coincide.

Our work demonstrates that D2D communications can ef-

fectively replace a server with full database access despite the

fact that each user accesses only a portion of the database and

that this is possible with a negligible transmission overhead.

That is, the performance of the system under investigation

and that of the one in [5], which must utilize the server, are

very close to one another for realistic values of the system

parameters.

The remainder of the paper is organized as follows. In

Section II, we describe the system model. Section III states our

main results. In Section IV, we detail the achievability tech-

nique. Section V contains the derivation of the lower bound.

In Section VI, we provide numerical results to illustrate the

system performance. Section VII summarizes our conclusions.

II. SYSTEM MODEL

Consider a network where a central server, which stores

a database of N files, W1, ..,WN , each with size F bits, is

connected to K users via a public noiseless link, similar to

references [1], [5]–[8]. Each user is equipped with a cache

memory with size MF bits, i.e., M denotes the normalized

cache memory size. Let Zk represent the content of the cache

memory at user k. The system operates over two phases, cache

placement and coded delivery, as depicted in Fig. 1.

A. Cache placement phase

In this phase, the server allocates functions of its database in

the end users’ cache. These possible allocations are designed

to preserve the memory capacity constraint at each user

without the knowledge of the file it will request in the future.

Definition 1. (Cache Placement): In the cache placement
phase, the server maps the files of its database to the cache

memories of the end users. In particular, the content of the
cache memory at user k is given by

Zk = φk(W1,W2, ..,WN), k = 1, 2, ..,K, (3)

where φk : [2F]N → [2F]M , i.e., H(Zk) ≤MF . �
B. Delivery phase

During peak traffic, each user requests a randomly selected

file [1]. We define dk to denote the index of the file requested

by user k, i.e., dk ∈ {1, 2, .., N}, and d = (d1, d2.., dK) to

represent the demand vector of all network users at any request

instance. Similar to [2] and [8], we assume that the users’

requests must be satisfied via D2D communications only, i.e.,

the server does not participate in the delivery phase. With

knowledge of the demand vector d, user k maps the content

of its cache memory, Zk, into a signal that is transmitted to

all network users over a noiseless interference-free link. From

the K−1 received signals and Zk, user k reconstructs Wdk
.

Definition 2. (Coded Delivery): The delivery phase is defined
by a set of encoding and decoding functions at each user. In
particular, the mapping from the content of the cache memory
of user k, and the demand vector d into the transmitted signal
by user k is represented by the encoding function

Xk,d = ψk(Zk,d), k = 1, 2, ..,K, (4)

where ψk : [2F]M × {1, ..N}K → [2F]Rk , and Rk is
the normalized rate of the transmitted signal by user k.
In addition, user k has a decoding function to recover its
requested file

Ŵdk
= μk(Zk,d, X1,d, .., Xk−1,d, Xk+1,d, .., XK,d), (5)

where μk : [2F]M × {1, ..N}K × [2F]
∑

i �=k Ri → [2F], and
k = 1, 2, ..,K. �

We define RC
T =

∑K
i=1 Ri to denote the normalized sum

rate of the transmitted signals by all network users at the

request instance, noting that the primary goal of coded caching

is to reduce this rate.

C. System Requirements
As illustrated above, the main server remains silent during

the delivery phase, thus all users’ requests must be satisfied via

D2D communications. Furthermore, we impose confidentiality

constraints on the database files. In particular, each user should

be able to decode its requested file, however, it must not be

able to gain any information about the content of the remaining

N−1 files. We refer to these confidentiality requirements as

secure caching. Therefore, we have the following definition

for a memory-rate pair to be securely achievable.

Definition 3. The secure memory-rate pair (M,RC
T) is said

to be achievable if ∀ε, δ > 0 and F → ∞, there exists a set
of caching functions, {φk}Kk=1, encoding functions, {ψk}Kk=1,
and decoding functions, {μk}Kk=1, such that the following
constraints are satisfied

max
d,k∈{1,..,K}

Pr(Ŵdk
�= Wdk

) ≤ ε, (6)

max
d,k∈{1,..,K}

I(W−dk
;X1,d, .., XK,d, Zk) ≤ δ, (7)

where W−dk
= {W1, ..,WN}\{Wdk

}, i.e., set of all files
except the one requested by user k. �

The optimal secure memory-rate trade-off, i.e., the lower

bound on the normalized sum rate, is defined as

RC∗
T = inf{RC

T : (M,RC
T) is securely achievable}. (8)

III. MAIN RESULTS

In this section, we present the main results of this paper.

Theorem 1. For M = Nt
K−t +

1
t +1, and t ∈ {1, 2, ..,K−1},

the following secure rate is achievable

RC
T ≤

2K(N +M − 1)

1+(M−1)K+

√
(1−(M−1)K)

2−4KN
. (9)

Moreover, the convex envelope of the above points, defined for
each M , is also achievable. �
Theorem 2. For 1 ≤M ≤ N(K − 1), the achievable secure
rate is lower bounded by

RC∗
T ≥ max

s∈{1,2,..,min(K,N/2)}

s
N/s� − 1− (s− 1)M

N/s� − 1
. (10)

�
It is worth mentioning that under (7), each user should

not be able to recover any file from the content of its cache

memory. This implies that the transmission rate will be strictly

positive even for large values of M . When secure delivery is

the only requirement in the system [7], [8], it is easy to see

that the transmission rate is equal to zero whenever M ≥N .

On the other hand, it is evident from (10), by setting s= 1,

that the normalized sum rate is bounded below by 1. A similar

conclusion was shown in [5], for multicast delivery phase by

the server, where this bound is tight for large values of M , i.e.,

M =N(K−1). The numerical results in Section VI indicate

that the performance of the multicast secure coded caching

in [5], and the performance of device-to-device secure coded

caching, that we propose in this paper, are virtually the same

for realistic values of the system parameters.

IV. ACHIEVABILITY

In this section, we detail the derivation of the upper bound

in Theorem 1.

A. Cache placement phase

For M = Nt
K−t +

1
t +1, and t∈{1, 2, ..,K−1}, each file in

the database is encoded using a secret sharing scheme [9]. In

particular, a file, Wn, is encoded using (t
(
K−1
t−1

)
, t
(
K
t

)
) secret

sharing scheme. We obtain t
(
K
t

)
shares, eachwith size Fs bits,

where

Fs =
F

t
(
K
t

)
− t

(
K−1
t−1

) =
F

(K − t)
(
K−1
t−1

) . (11)

Each share is denoted by Sj
n,T , where n is the file index i.e.,

n ∈ {1, .., N}, j = 1, .., t, and T ⊆ {1, ..,K}, |T | = t. The

server allocates the shares Sj
n,T , ∀j, n in the cache of user k

whenever k ∈ T .

Furthermore, the server generates (t + 1)
(

K
t+1

)
independent

keys. Each key, Ki
TK , is uniformly distributed over {1, .., 2Fs},

where i = 1, .., t+1, and TK ⊆ {1, ..,K}, |TK | = t+1. User

k stores the keys Ki
TK , ∀i, if k ∈ TK .

Remark 1. In this placement scheme, each user stores

Nt
(
K−1
t−1

)
shares and (t+1)

(
K−1

t

)
keys, thus the accumulated

number of bits to be stored in each cache memory is given by

Nt

(
K − 1

t− 1

)
Fs + (t+ 1)

(
K − 1

t

)
Fs

=
Nt

K − t
F + (1 +

1

t
)F = MF. (12)

Clearly, the proposed scheme satisfies the cache capacity

constraint at each user. Also, from (12), we can get

t =
1+(M−1)K+

√
(1−(M−1)K)

2−4KN

2(N +M − 1)
. (13)

�B. Coded Delivery phase

We focus our attention on the worst case scenario, where the

K users request K distinct files. At each transmission instance,

we consider a set S ⊆ {1, ..,K}, where |S| = t+1. User k,

where k ∈ S , multicasts the following signal of length Fs bits

Ki
S ⊕l∈S\{k} S

j
dl,S\{l}, (14)

where the index i is chosen in way that guarantees the

uniqueness of used keys at each transmission, and the index

j is chosen to ensure that each transmission is formed by

shares that had not been transmitted before. From the cache

placement phase, we can observe that any t users belong to

the set S share t shares of the file requested by the remaining

user that is in S. Thus, each user in S obtains t shares from

its requested file during this instance of transmission. There

are
(

K
t+1

)
different choices of the set S, and for each choice

t + 1 signals of length Fs bits are transmitted, therefore the

total number of the transmitted bits is given by

RT = (t+ 1)

(
K

t+ 1

)
Fs =

K

t
F. (15)

Consequently, we achieve the following normalized sum rate

RC
T =

2K(N +M − 1)

1+(M−1)K+

√
(1−(M−1)K)

2−4KN
. (16)

Remark 2. At the end of the (t + 1)
(

K
t+1

)
transmissions,

user k obtains t
(
K−1

t

)
different shares from its requested file,

in addition to the shares in its cache. Therefore, user k can

reconstruct the requested file from its t
(
K
t

)
shares.

On the other hand, user k does not obtain any new infor-

mation about the shares of the other files. Note that, at any

instance if user k belongs to the set S , then the transmitted

signals are formed from the shares of Wdk
and shares that

have been already placed in its cache memory during the cache

placement phase. For the other case, where user k does not

belong to the set S, all the transmitted signals are encrypted

using one-time pads, which are unknown at user k, thus, user k
cannot gain any information from these signals. Furthermore,

the server has generated (t + 1)
(

K
t+1

)
independent keys with

lengths equal to the share size, thus with a proper selection

of the encrypting key at each transmission, we can ensure

the uniqueness use of each key. Therefore, the secrecy of the

transmitted signals, from any external wiretapper that accesses

the network links during the delivery phase, is also ensured,

i.e., for δ > 0, we have

max
d

I(W1,W2, ..,WN ;X1,d, .., XK,d) ≤ δ. (17)

That is, we have secure delivery as well as secure caching.

�
Using memory sharing techniques as explained in [1] and

[2], whose details we omit due to space constraints, the system

can achieve the convex envelope of the points given by the

values M= Nt
K−t+

1
t +1, and t ∈ {1, 2, ..,K−1}.

C. Example

We demonstrate our scheme by the following example.

Consider a system where K = N = 4 and M = 11
2 , i.e.,

t=2. The server encodes each file using (6, 12) secret sharing

scheme. In particular, for Wn, the server generates 12 shares,

denoted by Sj
n,T , j = 1, 2, |T | = 2, each of size F/6 bits.

Moreover, the server generates the set of keys Ki
TK , uniformly

distributed over {1, .., 2F/6}, where i = 1, 2, 3, and |TK | = 3.

User k stores the shares Sj
n,T , and keys Ki

TK whenever k ∈ T
and k ∈ TK , respectively. Note that this allocation satisfies the

cache capacity constraint. Now, consider the delivery phase,

where user k requests the file Wk, i.e., d = (1, 2, 3, 4). In this

case, the users will transmit the following signals

X1,d =

{
S1
2,13 ⊕ S1

3,12 ⊕K1
123, S

1
4,13 ⊕ S1

3,14 ⊕K1
134

S1
2,14 ⊕ S1

4,12 ⊕K1
124

}
,

X2,d =

{
S2
1,23 ⊕ S2

3,12 ⊕K2
123, S

2
4,23 ⊕ S2

3,24 ⊕K2
234

S2
1,24 ⊕ S2

4,12 ⊕K2
124

}
,

X3,d =

{
S1
1,23 ⊕ S2

2,13 ⊕K3
123, S

2
4,13 ⊕ S1

1,34 ⊕K2
134

S1
2,34 ⊕ S1

4,23 ⊕K3
234

}
,

X4,d =

{
S1
1,24 ⊕ S2

2,14 ⊕K3
124, S

2
1,34 ⊕ S2

3,14 ⊕K3
134

S2
2,34 ⊕ S1

3,24 ⊕K1
234

}
.

One can observe that with the help these signals, each user

utilizes the content of its cache to recover its requested file,

and it cannot obtain any information about the remaining 3
files. In addition, each signal is encrypted using one-time

pad which ensures the secrecy of the database files from any

external eavesdropper as in [8]. In the delivery phase, each

user participates by 3 distinct transmissions each of size F/6
bits, thus RC

T = 2. It worth mentioning that the system in [5]

achieves a normalized secure rate 1.3, for this small system

with these parameters. This difference is due to limited access

of the shares at each user, unlike the case in [5] where the

server has access to all shares during the delivery phase.

V. LOWER BOUND

The lower bound is based on cut-set arguments, simi-

lar to [2] and [5]. Assume that the first s users, s ∈
{1, 2, ..,min(N/2,K)}, request the files from 1 to s, such that

user i requests Wi, i ∈ {1, 2, .., s}, while the remaining K−s
users do not request any file. Define X1 to represent the trans-

mitted signals by the users to serve these requests, i.e., X1 =
{X1,(1,..,s), .., XK,(1,..,s)}. At the following request instance,

the first s users request the files from s+1 to 2s, such that user

i requests Ws+i. These requests are served by transmitting the

signals X2 = {X1,(s+1,..,2s), .., XK,(s+1,..,2s)}. We proceed

in the same manner, such that at the request instance q, the

first s users request the files from (q − 1)s + 1 to qs, such

that user i requests W(q−1)s+i, and the users transmit the sig-

nals Xq = {X1,((q−1)s+1,..,qs), .., XK,((q−1)s+1,..,qs)}, where

q ∈ {1, ..,
N/s�}. From the received signals over the request

instances 1, 2, ..,
N/s� and the information stored in its cache,

i.e., Zi, user i should be able to decode the files i, i+s, .., i+
(
N/s� − 1)s. Now, consider the set of files that is given by

W = {W1, ..,W(q−1)s+k−1,W(q−1)s+k+1, ..,Ws�N/s�}, i.e.,

set of all files except the one requested by user k at request

instance q. Therefore, we have

(s
N/s� − 1)F = H(W)

≤ H(W)−H(W|X1, ..,X�N/s�, Z1, .., Zs) + ε (18)

= I(W;X1, ..,X�N/s�, Z1, .., Zs) + ε (19)

= I(W;Xq, Zk) + I(W;X1, ..,Xq−1,Xq+1,

..,X�N/s�, Z1, ..Zk−1, Zk+1, .., Zs|Xq, Zk) + ε. (20)

Step (18) follows from condition (6). To simplify the notation,

we define X = {X1, ..,Xq−1 ,Xq+1, ..,X�N/s�} and Z =
{Z1, ..Zk−1, Zk+1, .., Zs}. Now, (20) can be expressed as

I(W;Xq, Zk) + I(W;X ,Z|Xq, Zk) + ε

≤ I(W;X ,Z|Xq, Zk) + ε+ δ (21)

= H(X ,Z|Xq, Zk)−H(X ,Z|W ,Xq, Zk) + ε+ δ (22)

≤ H(X ,Z) + ε+ δ (23)

= H(X) +H(Z|X) + ε+ δ (24)

≤ H(X) +H(Z) + ε+ δ (25)

≤
�N/s�∑

j=1,j �=q

H(Xj) +
s∑

i=1,i �=k

H(Zi) + ε+ δ (26)

≤ (
N/s� − 1)RF + (s− 1)MF + ε+ δ. (27)

Note that step (21) is due to (7). Therefore, we get

RC
T ≥

(s
N/s� − 1)− (s− 1)M

N/s� − 1
. (28)

Taking into account all possible cuts, we obtain the lower

bound stated in Theorem 2.

VI. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate

the proposed system’s performance.

Fig. 2 shows the performance of D2D coded caching systems

5 10 15 20 25 30 35 40

M

0

5

10

15

20

25

30

N
or
m
al
iz
ed

su
m

ra
te

Secure caching

Secure delivery only

No secrecy requirements

Fig. 2: Comparison between the required transmission rates under
different system requirements for N=K=30.

0 5 10 15 20 25 30 35 40 45
M

0

5

10

15

20

25

30

N
or
m
al
iz
ed

su
m

ra
te

Centralized device-to-device secure caching

Centralized multicast secure caching

Fig. 3: The achievable secure rates for the single server and D2D
coded caching for N=K=30.

under different requirements. In particular, we compare our

system with secure caching which also ensures secure delivery,

the system with secure delivery only [8], and the system with

no secrecy constraints [2]. For the latter two cases, the rate

is equal to zero wherever M ≥ N , as the whole database

can be stored in the cache memory. However, as evident from

Theorem 2, the rate under secure caching is bounded below by

1. In Fig. 3, we compare the performance of our system and

the one considered in [5]. We can observe that the gap between

the required transmission rate vanishes as M increases, i.e.,

the loss due to accessing a limited number of shares at each

user is negligible when M is sufficiently large. Finally, Fig.

4 shows that the gap between the lower and upper bounds

decreases as the memory size increases.

VII. CONCLUSIONS

In this work, we have characterized the fundamental limits

of secure device-to-device caching. In particular, we have

investigated a cache-aided network, where the users’ requests

should be served via device-to-device communications only.

We have imposed confidentiality requirements over the cache

placement and delivery phases. More specifically, each user

must not obtain any information about any file that he had

not requested. We have defined an achievable scheme for this

10 20 30 40 50 60 70 80 90 100 110
M

0

10

20

30

40

50

60

70

80

90

100

N
o
rm

a
li
ze
d
su
m

ra
te

Upper bound in Theorem 1.

Lower bound in Theorem 2.

Fig. 4: The upper bound vs the lower bound for N=K=100.

network, where the server encodes each file using a proper

secret sharing scheme and generates a set of random keys.

The resulting shares and keys are placed in the users’ cache

during the cache placement phase. After the users’ demands

are announced to all by the server, each user transmits a signal

to the remaining users encrypted with a one-time pad. As a

byproduct of this achievability scheme, the system can ensure

the secrecy of the files from any external eavesdropper that

overhears the delivery phase as well as we have also developed

a lower bound based on cut-set arguments. Our numerical

results indicate that the gap between the lower and upper

bounds decreases as the cache memory capacity increases.

Overall, the conclusion of this study is that D2D communi-

cations can take over the role of the server in the delivery

phase with a negligible transmission overhead even in the

presence of stringent confidentiality requirements. This adds

further confidence to D2D communications potentially playing

a significant role in upcoming communication systems [3].
REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Info. Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[2] M. Ji, G. Caire, and A. Molisch, “Fundamental limits of caching in
wireless D2D networks,” IEEE Trans. Info. Theory, vol. 62, no. 2, pp.
849–869, 2016.

[3] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device
communication in 5G cellular networks: challenges, solutions, and future
directions,” Communications Magazine, IEEE, vol. 52, no. 5, pp. 86–92,
2014.

[4] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device com-
munication in cellular networks,” Communications Surveys & Tutorials,
IEEE, vol. 16, no. 4, pp. 1801–1819, 2014.

[5] N. K. V. Ravindrakumar, P. Panda and V. Prabhakaran, “Fundametal
limits of secretive coded caching,” in IEEE International Symposium on
Information Theory (ISIT), 2016.

[6] A. A. Zewail and A. Yener, “Coded caching for resolvable networks with
security requirements,” in the 3rd Workshop on Physical-Layer Methods
for Wireless Security, CNS’16, 2016.

[7] A. Sengupta, R. Tandon, and T. C. Clancy, “Fundamental limits of caching
with secure delivery,” IEEE Trans. on Info. Forensics and Security,
vol. 10, no. 2, pp. 355–370, 2015.

[8] Z. H. Awan and A. Sezgin, “Fundamental limits of caching in D2D
networks with secure delivery,” in IEEE International Conference on
Communication Workshop (ICCW), 2015.

[9] I. B. D. R. Cramer and J. B. Nielsen, Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

