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Abstract—The past decade has witnessed significant effort
towards establishing reliable and information theoretically secure
rates in communication networks, taking advantage of the
properties of the communication medium. Such efforts include
those in the wireless medium where simultaneous transmissions
and the ensuing interference can prove advantageous from
an information theoretic secrecy point of view. With the goal
of obtaining a secrecy rate that scales with transmit power,
structured signaling with simultaneous favorable signal alignment
at the legitimate receiver(s) and unfavorable signal alignment
at the eavesdropper(s) has proven particularly useful in multi-
terminal Gaussian channels. Many challenges remain however in
realizing the vision of absolute security provided by the wireless
physical layer including handling more realistic models. In this
paper, we provide a brief overview of the state of the art,
the forward look and argue for an additional asset that could
be utilized for secrecy, i.e., bidirectional signaling. Taking the
bidirectional wiretap channel as an example, Gaussian signaling
is demonstrated to be as good as structured signaling from the
degrees of freedom point of view, while observed to be performing
better with finite transmit power. Moreover, taking bidirectional
signals explicitly into account for encoding performs even better
and provides a way forward to synergistically combine physical
layer based secrecy and encryption.

I. INTRODUCTION

Information theoretic security by enlarge deals with provid-
ing reliable communication rates between legitimate parties
with confidentiality (secrecy) guarantees from eavesdroppers
irrespective of their computational power. Information theo-
retic security was first formalized by Shannon [1]. Shannon
defined the notion of secure information transfer by comparing
the entropy of the message to the entropy of the message given
the observation of an eavesdropper (cryptanalyst). He showed
that, if the eavesdropper were to observe the exact signal sent
by a transmitter, then, in order to ensure no reduction in the
entropy of the message, i.e., perfect secrecy, the transmitter
and the receiver would have to share a key (presumably
through a secure channel) whose rate equals that of the
data to be sent. As such, achieving perfect secrecy against a
computationally unbounded eavesdropper is impractical. This
pessimistic observation arguably resulted in the shift in focus
towards countering computationally-bounded adversaries, i.e.,
the broad field of cryptography.

It was not until three decades after Shannon’s original
classified work in the subject that Wyner had established the

notion of secrecy capacity [2]. Wyner demonstrated that a
positive reliable and secure communication rate between a
transmitter and a receiver can be achieved in the presence of
a wiretapper, when the channel between the transmitter and
the wiretapper is a discrete memoryless channel cascaded to
the discrete memoryless channel between the transmitter and
the receiver. While Wyner’s transformative work characterized
the rate equivocation region for the degraded wiretap channel,
reference [3] generalized Wyner’s framework to a large class
of (not necessarily degraded) channels. The secrecy capacity,
i.e., the largest rate of reliable communication that can be kept
confidential from an eavesdropper, of the Gaussian channel
was established in [4]. Following these early works from four
decades ago, the past decade has witnessed a significant re-
search effort in information theoretic security, arguably owing
to the advent of wireless communication networks, see for
example [5]–[12], and also [13]. We will provide a (very) brief
overview in the next section in an effort to motivate a forward
look and articulate the remaining challenges in realizing
the vision of information theoretic security, which promises
provable confidential communication against computationally
unbounded eavesdroppers.

II. STATE OF THE ART AND FORWARD LOOK

Multi-terminal models where information theoretic secrecy
can provide valuable insights are particularly relevant in
wireless communication scenarios. This is due to the open
medium where simultaneous transmissions and overhearing
can take place. While such a scenario is arguably more vulner-
able to eavesdropping attacks, it is also the broadcast nature
of the medium that can provide advantages for legitimate
entities of the network to implicitly or explicitly cooperate
for improved secrecy. Effort in this realm includes study
of the Gaussian multiple access channel in the presence of
an eavesdropper, i.e., the multiple access wiretap channel,
where superposing transmitted signals can provide implicit
cooperation against the eavesdropper [5]. Moreover, terminals
can explicitly cooperate to introduce intentional interference
to the communication scenario [7]. Referred to as cooperative
jamming, this intentional interference is introduced to the
medium in order to induce a more detrimental channel for
the eavesdropper(s) while impacting the reception capability



of the legitimate receiver(s) the least. That is, one can readily
observe cooperative jamming as a form of channel pre-fixing.
A cooperative jammer can mimic noise or send a codeword.
Earlier work has observed that cooperative jamming with
Gaussian noise can help improve sum secrecy rates for the
multiple access wiretap channel, with legitimate transmitter(s)
with better channel quality to the eavesdropper taking the role
of cooperative jammer [7]. That is to say that a cooperative
jammer abandons sending secret messages, yet is helpful to
improve for the secrecy rate of the remaining terminals.

A line of work developed in search for the secrecy capacity
of various network models examines the high signal-to-noise
ratio (SNR) behavior of secrecy capacity. The motivation
behind this direction is certainly contributed by that which is
identical to the non-secrecy counterpart of the literature: even
when capacity results are not tractable, their high SNR behav-
ior can be, delivering insightful design principles, interference
alignment being a prominent example [14]. In addition, an
important reason to pursue a secure degrees of freedom
characterization is to show superiority of certain schemes over
others with respect to secrecy rate scaling with power. In
particular, this analysis has been used to show that structured
signaling can be desirable from the secrecy perspective. The
secure degrees of freedom of a Gaussian wiretap channel,
where the secrecy capacity is the difference of the capacities
of the channels between the transmitter and the legitimate
receiver (the main channel), and between the transmitter and
the eavesdropper (the eavesdropper channel) [4], is zero. A
cooperative jammer that simply puts Gaussian noise into the
channel can significantly enhance the secrecy rate but does not
improve the secure degrees of freedom, due to the fact that
the achievable rate is again a difference of two terms with the
same scaling in power. In other words, introducing a noise
term to both the main channel and the eavesdropper channel,
while beneficial in finite SNR regime, is not helpful as the
power grows to infinity. Reference [10] showed that structured
signaling that aligns the signals transmitted from the legitimate
transmitter and the cooperative jammer favorably at the legiti-
mate receiver while simultaneously aligning unfavorably at the
eavesdropper leads to positive secure degrees of freedom. The
codebooks for transmission as well as cooperative jamming
in this case were constructed either from integer lattices or
nested lattices. Subsequently, reference [11] has shown that
the secure degrees of freedom of the Gaussian wiretap channel
with a cooperative jammer is equal to 1

2 by proving the
converse and showing achievability by signaling and alignment
with integer lattices for almost all channel gains, i.e., real
interference alignment (signal scale alignment). Further work
on secure degrees of freedom analysis on wiretap channel
with a cooperative jammer studies multiple antenna terminals
[12], improving the secure degrees of freedom of the MIMO
wiretap channel [9] from zero when the number of antennas
at the eavesdropper is greater than or equal to the number of
antennas at the transmitter, to a positive number depending
on the number of antennas at the cooperative jammer. The
achievability in this case requires careful orchestration of

spatial alignment and signal scale alignment depending on the
number of antennas available at each terminal.

While insightful as to what could be achieved in terms of
secrecy rate scaling with power, and instructive in signaling
schemes that are beneficial in this regard, alignment based
schemes often require accurate channel state information of
the involved parties. In fact, complete and accurate channel
state information, even that of an external eavesdropper has
been a standing assumption in all but very recent work in infor-
mation theoretic security. In reality, the eavesdropper channel
is unlikely to be known to the legitimate parties, unless the
eavesdropper is part of the legitimate system perhaps untrusted
with information, e.g. [6]. Understandably, this assumption on
channels is a road block in making the information theoretic
security based design approach practical. Recent efforts have
thus emerged in relaxing this assumption and finding methods
of providing secure rates irrespective of the eavesdropper
channel state. These methods differ in the way they address
this relaxation. For example, early work by Goppala et. al.
on the single user fading wiretap channel considers only the
distribution of the channel state to be known [8]. Recent work
by Xie and Ulukus on blind cooperative jamming for the
Gaussian wiretap channel with a cooperative jammer shows
that the same secure degrees of freedom as with full channel
state information is achievable for almost all channel gains
as long as the channel gains to the eavesdropper are static
and below an aggregate value [15]. Perhaps the strongest
model is that of reference [16], which studies a MIMO wiretap
channel where the secrecy guarantee is against any sequence
of eavesdropper channel states that can materialize during the
transmission and can vary in each channel use. This work
requires no statistical model for the eavesdropper channel
gains, in fact a proper distribution need not even exist. It
is shown that universal secrecy, that is secrecy against any
channel sequence, is possible, but at the expense of reduced
secrecy rate as well as reduced secure degrees of freedom.
This severe penalty suggests that an examination of what is
practically relevant is needed. That is, while we strive for the
strongest theoretical result, the design insight perhaps should
rely on a practically relevant model. This area thus remains
to be full of interesting questions towards realizing the vision
offered by physical layer based unconditional security.

As elaborated above, there has been a fair amount of work
in structured signaling and signal alignment to provide secrecy
rate scaling. Noting that secrecy capacity results are much less
tractable for multi transmitter models, the secure degrees of
freedom analyses provide the comfort of tight results but only
in the high SNR. Indeed, structured signaling approaches may
be less than favorable in low to moderate SNR. One than might
wonder if there are models where such structured signaling is
not advantageous. In the remainder of this short paper, we
show such a case and argue that a road less traveled in non-
secrecy problems, namely that of signaling with memory may
offer a way forward. That is, we hypothesize, using the case
study below, that bidirectionality of the wireless links may be
an asset that secrecy based designs can tap into.



Fig. 1. The Gaussian two-way wiretap channel.

III. A CASE STUDY: THE TWO-WAY WIRETAP CHANNEL

The simplest model where the bidirectional nature of the
communication links can be taken advantage of is the two-way
channel in the presence of an eavesdropper. We will study the
secrecy rates, and for tight results, their high SNR behavior.
The main observation is that, in this set up, structure does not
buy us a secrecy advantage, utilizing the feedback link does.

A. The Channel Model

Consider a Gaussian two-way wiretap channel as depicted
in Fig. 1. Xk(i), k = 1, 2, is the transmitted signal from
user k at the ith channel use. Yk(i), Ye(i) are the received
signals at user k and the external eavesdropper. After removing
self interference, the received signals at the two users and the
eavesdropper, over the n channel uses, are given by

Y n1 = Xn
2 +Nn

1 (1)
Y n2 = Xn

1 +Nn
2 (2)

Y ne = h1X
n
1 + h2X

n
2 +Nn

e , (3)

where hk, k = 1, 2, is the channel gain from user k to the
eavesdropper. Nn

1 , N
n
2 , N

n
e are the Gaussian noise at user

1, user 2, and the eavesdropper. N1, N2, Ne ∼ N (0, 1) are
independent and identically distributed (i.i.d.) across the time
index. The power constraints for k = 1, 2 are

lim
n→∞

1

n

n∑
i=1

E{X2
k(i)} ≤ P. (4)

User k intends to send a message Wk to user j, k, j = 1, 2,
and k 6= j, and to keep its message Wk secret from the
external eavesdropper. The decoder at user k uses Y nk to
estimate user j’s message, Ŵj , k 6= j. The secrecy rate
pair (Rs1 , Rs2) is said to be achievable if for every ε > 0,
there exists a channel code (2nRs1 , 2nRs2 , n) such that Pe =
Pr{(Ŵ1, Ŵ2) 6= (W1,W2)} ≤ ε and 1

nI(W
n
1 ,W

n
2 ;Y

n
e ) ≤ ε.

The achievable secure degrees of freedom (s.d.o.f.) for user k,
for a given secrecy rate Rsk , is defined as

dk = lim
P→∞

Rs,k
1
2 log2 P

. (5)

In the following, we will first present the upper bound for
the sum s.d.o.f. for this channel and then present three schemes
which achieves it.

B. Upper bound

The sum secrecy rate of the channel in (1)-(3), can be upper
bounded as follows. The bound is readily obtained as a special
case of the bound derived in reference [17].

Rs1 +Rs2 ≤

1

2
min

{{
log2

(
1 +

P

1 + h21P

)
+ log2

(
1 + (1 + h22)P

)}
,

{
log2

(
1 +

P

1 + h22P

)
+ log2

(
1 + (1 + h21)P

)}}
. (6)

Using (6), the sum s.d.o.f. is upper bounded as

d1 + d2 ≤ lim
P→∞

Rs1 +Rs2
1
2 log2 P

(7)

≤ lim
P→∞

1
2

{
log2

(
1 + P

1+h2
1P

)
+ log2

(
1 + (1 + h22)P

)}
1
2 log2 P

= 1

C. Achievability Using Structured Signaling

First, let us consider an achievable scheme using signal scale
alignment, i.e., amplitude modulation [11]. The scheme is as
follows. Transmitter k sends a combination of an informa-
tion signal, Uk, which carries message Wk, and a jamming
signal, Vk, which is intended to mask the other transmitter’s
information signal at the eavesdropper. Uk and Vk, k = 1, 2,
are independently and uniformly drawn from the constellation
a{−Q,−Q+1, · · · , Q−1, Q}, where Q is a positive integer,
and a is a real number which is chosen to satisfy the power
constraint at each user.

The transmitted signals are given by

X1 =
α

h1
U1 +

β

h1
V1 (8)

X2 =
β

h2
U2 +

α

h2
V2, (9)

where α and β are chosen to be rationally independent.
The transmitted signals Xn

1 , X
n
2 are i.i.d. over the chan-

nel uses and the encoder is memoryless. Denoting [x]+ =
max{0, x}, for user k, k = 1, 2, the secrecy rate

Rsk = [I(Uk;Yj)− I(Uk;Ye)]+ , (10)

is achievable by stochastic encoding at user k, where j = 1, 2,
and j 6= k [3]. Thus, we bound the sum rate as follows.

Rs1 +Rs2

≥ I(U1;Y2) + I(U2;Y1)− [I(U1;Ye) + I(U2;Ye|U1)] (11)
= I(U1;Y2) + I(U2;Y1)− I(U1, U2;Ye), (12)

where (11) follows since

I(U2;Ye) = H(U2)−H(U2|Ye) (13)
≤ H(U2|U1)−H(U2|Ye, U1) = I(U2;Ye|U1). (14)

The received signal at the eavesdropper is given by

Ye = h1X1 + h2X2 +Ne (15)



= α(U1 + V2) + β(U2 + V1) +Ne. (16)

We upper bound I(U1, U2;Ye) as follows:

I(U1, U2;Ye) ≤ I(U1, U2;Ye, Ne) (17)
= I(U1, U2;Ye|Ne) (18)
= H(α(U1 + V2) + β(U2 + V1))−H(αV2 + βV1) (19)

≤ log2(4Q+ 1)2 − log2(2Q+ 1)2 ≤ 2 (20)

where (18) follows since (U1, U2) and Ne are independent, and
(20) follows since the entropy of a uniform random variable
over the set a{−2Q, · · · , 2Q} upper bounds the entropy of
U1 + V2, and U2 + V1.

Choosing Q = P
1−ε

2(2+ε) − ν and a = γP
1+2ε

2(2+ε) , where γ, ν
are constants that do not depend on P , satisfies the power
constraints. For user 1, we lower bound I(U1;Y2) as follows:

I(U1;Y2) = H(U1)−H(U1|Y2) (21)
≥ H(U1)− 1− Pe1 log2(|U1|) (22)
= (1− Pe1) log2(2Q+ 1)− 1, (23)

where U1 = a{−Q, · · · , Q}, Pe1 = Pr{Û1 6= U1}, Û1 is the
estimate of U1 at the receiver of user 2.

Using results from [18], Pe1 can be upper bounded as
Pe1 ≤ exp(−µP ε), where the minimum distance between the
received constellation points at user 2 is lower bounded using
Khintchine-Groshev theorem; µ is a constant which does not
depend on P . Note that choosing α and β to be rationally
independent enables user k to decode Uj , j 6= k [18]. Thus,
we have

I(U1;Y2) ≥ (1− exp(−µP ε)) log2(2Q+ 1)− 1 (24)

≥ (1− ε)
2(2 + ε)

log2 P + o(log2 P ). (25)

Following the same analysis as for I(U1;Y2), we obtain

I(U2;Y1) ≥
(1− ε)
2(2 + ε)

log2 P + o(log2 P ). (26)

Thus, substituting (20), (25), and (26) in (12) gives

Rs1 +Rs2 ≥
(1− ε)
2 + ε

log2 P + o(log2 P ), (27)

and the sum s.d.o.f. is lower bounded as

d1 + d2 ≥ lim
P→∞

Rs1 +Rs2
1
2 log2 P

=
2(1− ε)
2 + ε

. (28)

Since ε can be arbitrarily small, d1 + d2 = 1 is achievable.

D. Achievability Using Gaussian Signaling

In the previous section, we have shown that the sum
secure degrees of freedom is achievable by real interference
alignment. In this section, we will see that alignment is not
necessary at all. Specifically, we will simply employ Gaussian
signaling and cooperative jamming with Gaussian noise. It
suffices to show the achievability of the pair (d1, d2) = (1, 0).
It follows then that the pair (0, 1) is also achievable and sum
s.d.o.f. of 1 is then achievable by time sharing.

We transmit i.i.d. signals, Xn
1 , X

n
2 , over n. In addition,

at the ith channel use, user k does not utilize any of the
previously received signals [Yk(1) · · ·Yk(i− 1)] for encoding
Xk. The transmitter at user 1 maps its message W1 to Xn

1 ,
where X1 ∼ N (0, P ), using a stochastic encoder. Simultane-
ously, user 2 sends a cooperative jamming signal Xn

2 , where
X2 ∼ N (0, P ), which carries no information. Since Xn

2 is
independent from Xn

1 , and the encoding function at user 1
does not depend on its previous received signals, we have
a memoryless Gaussian wiretap channel, and the following
secrecy rate is achievable using stochastic encoding [3]:

Rs1 = [I(X1;Y2)− I(X1;Ye)]
+ (29)

=
1

2

[
log2(1 + P )− log2(1 +

h21P

1 + h22P
)

]+
. (30)

Thus, d1 = lim
P→∞

Rs1
1
2 log2 P

= 1, and (1, 0) is achievable.

E. Achievability Using Gaussian Signaling with a Twist

In this section, we will present the achievable scheme from
[17] which utilizes the backward channel signaling explicitly
and combines cooperative jamming and encryption in a two
phase scheme. During the first phase, with time sharing factor
1 − a, 0 ≤ a ≤ 1, user 2 sends a key, K, to user 1
using a Gaussian codebook of i.i.d. sequences drawn from
N (0, P ), and user 1 jams the eavesdropper by transmitting
an i.i.d. Gaussian noise sequence with power P , in order to
help secure the key from the eavesdropper. During the second
phase, user 1 uses K in encrypting its message W1, and
sends the encoded signal using a Gaussian codebook with
i.i.d. components drawn from N (0, P ), to user 2, while user 2
performs cooperative jamming by sending i.i.d. Gaussian noise
sequences with power P . The rate of the key, RK , transmitted
by user 2 in the first phase is chosen as

RK <
1

2
min

{[
log2(1 + P )− log2

(
1 +

h22P

1 + h21P

)]+
,

log2

(
1 +

h21P

1 + h22P

)}
. (31)

Note that the key rate is chosen to be less than 1
2 [log2(1 +

P ) − log2(1 +
h2
2P

1+h2
1P

)]+ in order to keep the key secret
from the eavesdropper, by utilizing a stochastic encoder at
user 2. In addition, the key rate is chosen to be smaller
than 1

2 log2(1 +
h2
1P

1+h2
2P

) since the key is utilized at user
1 to compensate for the rate loss of the forward channel
due to the existence of the eavesdropper, which is equal to
1
2 log2(1 +

h2
1P

1+h2
2P

). User 1 generates 2(1−a)nRK codebooks,
each corresponds to a particular K and is composed of
2(an log2(1+P ))/2 codewords. Upon estimating the value of
K from the first phase, user 1 chooses the codebook that
corresponds to this estimate, and performs stochastic encoding
to encode its message W1.
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Fig. 2. Achievable secrecy rates from Sections III-C-III-E. h1 = 2, h2 = 1.

Using this two phase scheme, the rate pair (Rs,1, 0), where

Rs,1 =
1

2
max
0≤a≤1

a

[
log2(1 + P )−

[
log2

(
1 +

h21P

1 + h22P

)

− 1− a
a

[
log2(1 + P )− log2

(
1 +

h22P

1 + h21P

)]+]+]+
,

(32)

is achievable [17]. Similarly, by exchanging the roles of user 1
and user 2 and correspondingly exchanging h1 with h2 in (32),
we obtain that the resulting rate pair (0, Rs2) is achievable.
Thus, the convex hull of (0, 0), (Rs1 , 0), (0, Rs2) is achievable
by time sharing, and we have that

d1 + d2 = lim
P→∞

max
0≤b≤1

bRs1 + (1− b)Rs2
1
2 log2 P

(33)

= lim
P→∞

1
2 max
0≤a≤1

a log2(1 + P )

1
2 log 2P

= 1, (34)

where b is the time sharing factor for the scheme that achieves
the pair (Rs1 , 0). Thus d1 + d2 = 1 is achievable.

F. Comparison

We have seen that all three schemes achieve the same
secrecy rate scaling with power. It is also instructive to
compare their finite SNR performance. Figure 2 shows the
achievable rate vs SNR and while the slope of secrecy rate
for the three schemes are identical, Gaussian signaling and
cooperative jamming outperforms discrete signaling. Further,
the scheme that explicitly utilizes the signals heard on the
back channel performs the best. This supports the notion that
utilizing bidirectionality for jamming and encryption could be
an alternative for alignment in some multi-transmitter models.

IV. CONCLUSION

In this paper, we have provided a brief overview of the
state of the art in information theoretic secrecy, and chal-
lenges for bringing the promise of unconditional security at
the foundation of (wireless) network design. We have also
provided a case study with the two-way wiretap channel
where careful signal alignment at the legitimate receiver and
the eavesdropper is not necessary thanks to the availability

of bidirectional communication between the two legitimate
communicating nodes. The take away points of the paper are
(i) while the high SNR studies are insightful as to proving
an advantage of a signaling scheme, finite SNR performance,
which likely is of more relevance in practical scenarios, also
needs to be examined carefully; (ii) channel assumptions
are a main concern for information theoretic security and a
practically relevant scenario for eavesdropper channels needs
to be brought upon that balances the concerns regarding the
robustness of information theoretic secrecy methods to eaves-
dropper channel quality and of severe secrecy rate penalties;
and (iii) utilizing backward channels and designing secrecy
encoders accordingly enable synergistic combining of infor-
mation theoretic security with private key encryption and may
be a bridge between the two communities that emerged from
Shannon’s original work [1].
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