
On Coded Caching with Heterogeneous Distortion

Requirements

Abdelrahman M. Ibrahim, Ahmed A. Zewail, and Aylin Yener

Wireless Communications and Networking Laboratory (WCAN)

School of Electrical Engineering and Computer Science

The Pennsylvania State University, University Park, PA 16802.

{ami137,zewail}@psu.edu yener@engr.psu.edu

Abstract—This paper considers heterogeneous coded caching
where the users have unequal distortion requirements. The server
is connected to the users via an error-free multicast link and
designs the users’ cache sizes subject to a total memory budget.
In particular, in the placement phase, the server jointly designs

the users’ cache sizes and the cache contents. To serve the
users’ requests, in the delivery phase, the server transmits signals
that satisfy the users’ distortion requirements. An optimization
problem with the objective of minimizing the worst-case delivery
load subject to the total cache memory budget and users’
distortion requirements is formulated. The optimal solution for
uncoded placement and linear delivery is characterized explicitly
and is shown to exhibit a threshold policy with respect to the total
cache memory budget. As a byproduct of the study, a caching
scheme for systems with fixed cache sizes that outperforms the
state-of-art is presented.

I. INTRODUCTION

Wireless data traffic is increasing at an unprecedented rate

due to the demand on video streaming services, which have

accounted for 60 percent of total mobile data traffic in 2016
[1]. Efficient utilization of network resources is essential in

order to accommodate the growth in data traffic. Caching

utilizes the cache memories in the network nodes to shift

some of the data traffic to off-peak hours. Reference [2] has

proposed coded caching, where the end-users’ cache contents

are designed in a way to enable subsequently serving the users

using multicast transmissions, reducing the delivery load on

the server.

The significant gain achieved by coded caching has moti-

vated studying its fundamental limits in various setups [2]–

[28]. For instance, references [7]–[11] have studied coded

caching in multi-hop networks. Coded caching for device-to-

device (D2D) networks has been studied in [12]–[14]. Caching

with security requirements have been studied in [9], [15]–[17].

Content delivery networks consists of heterogeneous end-

devices that have varying storage, computational capabilities,

and viewing preferences. In turn, the effect of heterogeneity in

cache sizes on the delivery load has been studied in [14], [18]–

[22]. Additionally, optimizing the users’ cache sizes subject

to a network-wide total memory budget has been considered

in [23]–[26].

The heterogeneity in users’ preferences for content mo-

tivates developing coded caching schemes with different

quality-of-service requirements per user. In this realm, coded

caching schemes with heterogeneous distortion requirements

have been studied in references [27]–[29]. In particular, ref-

erence [27] has considered a centralized system where files

are modeled as independent and identically distributed (i.i.d.)

samples from a Gaussian source. Each file is represented by a

number of layers equal to the number of users in the system,

and accessing the first k layers guarantees that the kth user’s

distortion requirement is satisfied. In this setup, reference [27]

has minimized the squared error distortion for given delivery

load, cache sizes, and popularity distribution. Reference [28]

has studied the problem of minimizing the delivery load in

a centralized caching system with heterogeneous distortion

requirements and heterogeneous cache sizes at the users. In

particular, reference [28] has considered a separation approach

where the memory allocation over the layers and the caching

scheme are optimized separately.

In this work, like reference [28], we study the problem of

minimizing the delivery load given heterogeneous distortion

requirements at the users. Different from references [27] and

[28], we consider that the server not only designs the users’

cache contents, but also optimizes their cache sizes subject

to a total cache memory budget. In contrast to [28], we

jointly design the users cache sizes, the memory allocation

over the layers, and the caching scheme in order to minimize

the delivery load that achieves certain distortion requirements

at the users. Under uncoded placement and linear delivery,

we show that the joint optimization problem reduces to a

memory allocation problem over the layers which can be

solved analytically. In particular, the memory allocation over

the layers is obtained using a threshold policy, which depends

on the available total cache memory budget and the target

distortion requirements at the users. We extend the cut-set

bound in [28] to systems with total cache memory budget and

compare it with the delivery load achieved by the proposed

scheme. We observe that the cut-set bound is achievable for

large total cache memory budgets.

Although our primary goal in this study is to demonstrate

the merit of optimally allocating the cache sizes at different

users, we note that the new caching scheme we propose im-

proves on the caching schemes in [28] for systems with fixed

cache sizes, since we jointly optimize the caching scheme



Fig. 1. Caching system with heterogeneous distortion requirements D1 ≥

D2 ≥ · · · ≥ DK .

and the memory allocation over the layers. More specifically,

the flexibility in our scheme allows us to exploit the multicast

opportunities over all layers. Our numerical results confirm the

gain attained by our proposed scheme over the two caching

schemes presented in [28]. Finally, we present a numerical

example that shows the suboptimality of exploiting only the

intra-layer multicast opportunities without taking into account

the inter-layer multicast opportunities.

Notation: Vectors are represented by boldface letters, ⊕
refers to bitwise XOR operation, |W | denotes size of W , A\
B denotes the set of elements in A and not in B, [K] ,

{1, . . . ,K}, φ denotes the empty set, (φ [K] denotes non-

empty subsets of [K].

II. SYSTEM MODEL

We consider a server connected to K users via an error-

free multicast network, see Fig. 1. The server has a library

of N files, W1, . . . ,WN , each file Wj consists of F i.i.d.

samples [Sj,1, . . . , Sj,F ] from a uniform discrete source. That

is, Sj,i is uniformly distributed over Fq, Pr(Sj,i = s) = 1/q
for s ∈ Fq. We use Hamming distortion as our distortion

measure, i.e., we have

d(s, ŝ) =

{

0, if s = ŝ,

1, if s 6= ŝ.
(1)

The rate-distortion function for a uniform discrete source with

Hamming distortion is given as [30]

ρ(D) = log(q)−H(D)−D log(q − 1), (2)

where 0 ≤ D ≤ 1 − 1/q. Since a uniform discrete source

with Hamming distortion is successively refinable [31], each

file can be represented using a scalable layered description that

achieves the target rate rl , ρ(Dl) at layer l for distortion

requirements D1 ≥ D2 ≥ · · · ≥ DK . In particular, layer 1
of each file is a coarse description with size r1F bits, while

layer l ∈ {2, . . . ,K} is a refinement with size (rl − rl−1)F

bits. In turn, we represent file Wj by W
(1)
j , . . . ,W

(K)
j , where

W
(l)
j denotes layer l of file j. Additionally, we have that Dk

is the distortion requirement at user k, i.e., user k needs layers

{1, . . . , k} in order to decode the requested file. Consequently,

we define the target rate vector r = [r1, .., rK ].

The sizes of the users’ cache memories are determined by

the server. In particular, the server allocates MkF bits to user

k such that
∑K

k=1MkF ≤ mtotNF bits, where mtot is the

cache memory budget normalized by library size NF . We

also define mk = Mk/N , to denote the memory size at user

k normalized by the library size NF . We consider the regime

where the number of files is greater than or equal the number

of users, i.e., N ≥ K , and Mk ∈ [0, Nrk], ∀k ∈ [K] which

implies mk ∈ [0, rk], ∀k ∈ [K]. We denote the memory size

vector by M = [M1, . . . ,MK ] and its normalized version by

m = [m1, . . . ,mK ].

The system has two operational phases: placement and

delivery [26]. In the placement phase, the server assigns the

users’ cache sizes and the contents of the users’ cache memo-

ries subject to the distortion requirements D = [D1, . . . , DK ]
and the cache memory budget mtot, without the knowledge of

the users’ demands. In particular, the server places a subset

of the library, Zk, at the cache memory of user k, such that

|Zk| ≤ MkF bits. In the delivery phase, user k requests the

file Wdk
which must be recovered with an average distortion

less than or equal to Dk. Equivalently, user k requests layers

[k] from file Wdk
. The requested files are represented by the

demand vector d = [d1, . . . , dK ]. We assume that d consists

of identical and independent uniform random variables over

the files [2]. In order to guarantee the desired distortion

requirements at the users, the server needs to deliver the bits

that are not cached by the users in each requested layer. In

particular, the server sends the signals XT ,d to the users

in the sets T (φ [K]. User k should be able to decode

W
(1)
dk
, . . . ,W

(k)
dk

by utilizing the cached contents Zk and the

transmitted signals XT ,d, T (φ [K]. Formally, we have the

following definitions.

Definition 1. For a given file size F , a caching scheme is

defined by the collection of cache placement, encoding, and

decoding functions (ϕk(.), ψT ,d(.), µd,k(.)). A cache place-

ment function

ϕk : FF
q × · · · × FF

q → [2MkF ], (3)

maps the N files to the cache of user k, i.e., Zk =
ϕk(W1,W2, ..,WN ). Given a demand vector d, an encoding

function

ψT ,d : FF
q × · · · × FF

q → [2vT F ], (4)

maps the requested files to a signal with length vT F
bits, which is sent to the users in T , i.e., XT ,d =
ψT ,d(Wd1 , ..,WdK

). Finally, a decoding function

µd,k : [2MkF ]× [2RF ] → FF
q , (5)

with R ,
∑

T (φ[K] vT , maps Zk and XT ,d, T (φ [K] to

Ŵdk
, i.e., Ŵdk

= µd,k

(

X{1},d, X{2},d, . . . , X[K],d, Zk

)

. �

Definition 2. For given normalized cache sizes m, distortion



requirements D1 ≥ D2 ≥ · · · ≥ DK , and rl = ρ(Dl), the

delivery load R(m, r) is achievable if there exists a sequence

of caching schemes such that lim
F→∞

1

F

F
∑

i=1

d(Sdk,i, Ŝdk,i) ≤

Dk, ∀k ∈ [K], ∀dk ∈ [N ]. Furthermore, the infimum over all

achievable delivery loads is denoted by R∗(m, r). �

In this work, we consider the class of cache placement

schemes, A, in which user k cache uncoded pieces of layers

[k] of the files, and the class of delivery schemes, D, where the

multicast signals are formed using linear codes. Note that the

uniform demands assumption implies that each user should

cache the same number of bits from all files, i.e., user k
dedicates mkF bits to each file.

Definition 3. For given normalized cache sizes m and target

rates r, the worst-case delivery load under an uncoded

placement scheme in A, and a linear delivery policy in D,

is defined as

RA,D(m, r) , max
d∈[N ]K

Rd,A,D =
∑

T (φ[K]

vT . (6)

Furthermore, by taking the infimum over A and all possible

delivery policies, we get R∗
A
(m, r). �

The trade-off between the delivery load and the total cache

memory budget is defined as follows.

Definition 4. For given normalized cache memory budget

mtot and target rate vector r, the infimum over all achievable

worst-case delivery loads is given as

R∗(mtot, r) = inf
m∈M(mtot,r)

R∗(m, r), (7)

where M(mtot, r) =
{

m
∣

∣ 0 ≤ mk ≤ rk,
K
∑

k=1

mk = mtot

}

.

Furthermore, we have

R∗
A(mtot, r) = inf

m∈M(mtot,r)
R∗

A(m, r). (8)

�

III. A NOVEL CACHING SCHEME

Given the layered description of the files explained in

Section II, the problem of designing the users’ cache contents,

under the uncoded placement assumption, can be decomposed

into K placement problems, each of which corresponds to one

of the layers [28]. In particular, the cache memory at user k

is partitioned over layers [k] and m
(l)
k denotes the normalized

cache memory dedicated to layer l at user k. In turn, the

placement problem of layer l is equivalent to the placement

problem with K − l + 1 users and unequal cache memories

m
(l) = [m

(l)
l , . . . ,m

(l)
K ] addressed in [22], [26]. By contrast,

in the delivery phase, decoupling over the layers is suboptimal.

That is, we need to jointly design the multicast signals over all

layers, in order to utilize all multicast opportunities. Next, we

explain the cache placement and delivery schemes in detail.

A. Placement Phase

Under uncoded placement, the placement phase is decom-

posed into K layers. In particular, layer l of each file is

partitioned over users {l, . . . ,K}. That is, W
(l)
j is divided into

subfiles, W̃
(l)
j,S ,S ⊂ {l, . . . ,K}, which are labeled by the set

of users S exclusively storing them. We assume that |W̃
(l)
j,S | =

a
(l)
S F bits ∀j ∈ [N ], i.e., we have symmetric partitioning over

the files and the allocation variable a
(l)
S ∈ [0, rl−rl−1] defines

the size of W̃
(l)
j,S . In turn, the set of feasible placement schemes

for layer l is defined by

A
(l)(m(l), r) =

{

a
(l)
∣

∣

∣

∑

S⊂{l,...,K}

a
(l)
S = rl − rl−1,

∑

S⊂{l,...,K}: k∈S

a
(l)
S ≤ m

(l)
k , ∀k ∈ {l, . . . ,K}

}

, (9)

where a
(l) is the vector representation of {a

(l)
S }S . Note that

the first constraint follows from the fact that the lth layer of

each file is partitioned over the sets S ⊂ {l, . . . ,K}, while

the second constraint represents the cache size constraint at

layer l for user k. Therefore, the cache content placed at user

k is given by

Zk =
⋃

l∈[k]

⋃

j∈[N ]

⋃

S⊂{l,...,K}: k∈S

W̃
(l)
j,S . (10)

B. Delivery Phase

In order to deliver the missing subfiles, the server sends

the sequence of unicast/multicast signals XT ,d, T ⊂ [K]. In

particular, the multicast signal to the users in T is defined by

XT ,d = ⊕j∈T

L
⋃

l=1

W
(l),T
dj

, (11)

where L , mini∈T i and W
(l),T
dj

denotes a subset of W
(l)
dj

which is delivered to user j via XT ,d. W
(l),T
dj

is constructed

using the side-information available at the users in T \ {j}.

That is, if W
(l),T
dj ,S

denotes the subset of W
(l),T
dj

cached by the

users in S, then we have

W
(l),T
dj

=
⋃

S⊂{l,...,K}\{j}: T \{j}⊂S

W
(l),T
dj ,S

. (12)

Additionally, we denote |XT ,d| =
∑L

l=1 |W
(l),T
dj

| = vT F

bits ∀j ∈ T and |W
(l),T
dj ,S

| = u
(l),T
S F bits. That is, the

transmission variable vT ∈ [0, rL] and the assignment variable

u
(l),T
S ∈ [0, a

(l)
S ] determine the structure of the signal XT ,d.

Furthermore, the unicast signal X{k},d delivers the missing

pieces of
⋃k

l=1W
(l)
dk

to user k, i.e., the pieces that had not

been delivered by multicast signals and are not cached by

user k. We assume |X{k},d| =
∑k

l=1 v
(l)
{k}F bits.

Next, we explain that all linear delivery schemes under

uncoded placement can be described by the following linear

constraints on the transmission and assignment variables.



In particular, for given allocation {a(l)}l, the set of linear

delivery schemes, D(a(1), . . . ,a(K), r), is defined by

vT =

L
∑

l=1

∑

S∈B
(l),T
j

u
(l),T
S , ∀T ⊂ [K] s.t. |T | ≥ 2, ∀j∈T , (13)

v
(l)
{k} +

∑

T ⊂{l,...,K}:k∈T ,|T |≥2

∑

S∈B
(l),T
k

u
(l),T
S +

∑

S⊂{l,...,K}:k∈S

a
(l)
S ≥

rl−rl−1, ∀l ∈ [K], ∀k∈{l, . . . ,K}, (14)
∑

T ⊂{l,...,K}: j∈T ,T ∩S6=φ

u
(l),T
S ≤ a

(l)
S , ∀l∈ [K], ∀j 6∈ S, ∀S ∈ A(l), (15)

0≤u
(l),T
S ≤a

(l)
S , ∀l∈ [K], ∀T (φ {l, . . . ,K}, ∀S∈B(l),T, (16)

where

B
(l),T
j ,

{

S ⊂ {l, . . . ,K} \ {j} : T \ {j} ⊂ S
}

,

A(l) ,
{

S ⊂ {l, . . . ,K} : 2 ≤ |S| ≤ K − l
}

,

and B(l),T ,
⋃

j∈T B
(l),T
j .

The structural constraints in (13) follows from the structure

of the multicast signals in (11) and (12). The delivery comple-

tion constraints in (14) guarantee that the unicast and multicast

signals complete the lth layer of the requested files, and the

redundancy constraints in (15) prevent the transmission of

redundant bits to the users. For example, for K = 3, the

structural constraints are defined as

v{1,2}=u
(1),{1,2}
{2} +u

(1),{1,2}
{2,3} =u

(1),{1,2}
{1} +u

(1),{1,2}
{1,3} , (17a)

v{1,3}=u
(1),{1,3}
{3} +u

(1),{1,3}
{2,3} =u

(1),{1,3}
{1} +u

(1),{1,3}
{1,2} , (17b)

v{2,3}=u
(1),{2,3}
{3} + u

(1),{2,3}
{1,3} + u

(2),{2,3}
{3} , (17c)

= u
(1),{2,3}
{2} +u

(1),{2,3}
{1,2} +u

(2),{2,3}
{2} , (17d)

v{1,2,3}=u
(1),{1,2,3}
{2,3} =u

(1),{1,2,3}
{1,3} =u

(1),{1,2,3}
{1,2} , (17e)

the delivery completion constraints for user 3 are defined as

v
(1)
{3}+

(

u
(1),{1,3}
{1} +u

(1),{1,3}
{1,2}

)

+
(

u
(1),{2,3}
{2} +u

(1),{2,3}
{1,2}

)

+

u
(1),{1,2,3}
{1,2} +

(

a
(1)
{3}+a

(1)
{1,3}+ a

(1)
{2,3}+ a

(1)
{1,2,3}

)

≥r1, (18a)

v
(2)
{3} + u

(2),{2,3}
{2} + a

(2)
{3} + a

(2)
{2,3} ≥ r2− r1, (18b)

v
(3)
{3} + a

(3)
{3} ≥ r3−r2, (18c)

and the redundancy constraints are defined as

u
(1),{1,3}
{1,2} + u

(1),{2,3}
{1,2} + u

(1),{1,2,3}
{1,2} ≤ a

(1)
{1,2}, (19a)

u
(1),{1,2}
{1,3} + u

(1),{2,3}
{1,3} + u

(1),{1,2,3}
{1,3} ≤ a

(1)
{1,3}, (19b)

u
(1),{1,2}
{2,3} + u

(1),{1,3}
{2,3} + u

(1),{1,2,3}
{2,3} ≤ a

(1)
{2,3}. (19c)

We denote the vector representation of the transmission

variables {vT }T , {v
(l)
{k}}k,l and the assignment variables

{u
(l),T
S }l,T ,S by v and u, respectively.

IV. FORMULATION

In this section, we demonstrate that the problem of minimiz-

ing the worst-case delivery load by optimizing over the users’

cache sizes, uncoded placement, and linear delivery, can be

formulated as a linear program. In particular, given the target

rate vector r, the total memory budget mtot, and N ≥ K , the

minimum worst-case delivery load under uncoded placement

and linear delivery, R∗
A,D(mtot, r), is characterized by

O1: min
a(l),u,v,m(l)

∑

T (φ[K]

vT (20a)

subject to a
(l) ∈ A

(l)(m(l), r), ∀l ∈ [K] (20b)

(u,v) ∈ D(a(1), . . . ,a(K), r), (20c)

K
∑

k=1

k
∑

l=1

m
(l)
k = mtot, (20d)

where A(l)(m(l), r) is the set of uncoded placement schemes

in layer l defined in (9) and D(a(1), . . . ,a(K), r) is the set

of feasible linear delivery schemes defined by (13)-(16).

We can also solve the problem of designing the caching

scheme and the memory allocation over the layers for systems

with fixed cache sizes as in [28]. In particular, for fixed

cache sizes m, the minimum worst-case delivery load un-

der uncoded placement and linear delivery, R∗
A,D(m, r), is

characterized by

O2: min
a(l),u,v,m(l)

∑

T (φ[K]

vT (21a)

subject to a
(l) ∈ A

(l)(m(l), r), ∀l ∈ [K] (21b)

(u,v) ∈ D(a(1), . . . ,a(K), r), (21c)

k
∑

l=1

m
(l)
k = mk, ∀k ∈ [K]. (21d)

In contrast to the formulation in reference [28], observe that

in (21), we jointly design the caching scheme and the memory

allocation over the layers, and exploit multicast opportunities

over different layers.

V. OPTIMAL CACHE ALLOCATION

In this section, we first characterize the solution to the

optimization problem in (20), i.e., we find the achievable

worst-case delivery load assuming uncoded placement and

linear delivery. Then, we present a lower bound on the trade-

off between the minimum worst-case delivery load under any

caching scheme and the cache memory budget.

Theorem 1. Given the target rate vector r, N ≥ K , and

the total memory budget mtot =
∑K

l=1 tlfl, where f1 , r1,

fl , rl − rl−1 for l > 1, tl ∈ {0, 1, . . . ,K − l + 1} and

tl+1 ≤ tl ≤ tl−1, the minimum achievable worst-case delivery

load under uncoded placement is given by

R∗
A,D(mtot, r)=R

∗
A(r,mtot)=

K
∑

l=1

(K − l + 1)− tl
1 + tl

fl. (22)

Furthermore, for general mtot ∈ [0,
∑K

k=1 rk], R
∗
A,D(r,mtot)

is defined by the lower convex envelope of these points. �



Proof. In Appendix A, we show that the optimal solution to

the optimization problem in (20) achieves the lower convex

envelope of the delivery load points in (22). In particular,

for mtot =
∑K

i=1 tifi where tl ∈ {0, 1, . . . ,K − l + 1} and

tl+1 ≤ tl ≤ tl−1, the optimal memory allocation is defined

as m
(l)
k = tlfl/(K − l+1) for k ∈ {l, . . . ,K}, i.e., the users

are assigned equal cache sizes in each layer. In turn, we apply

the MaddahAli-Niesen caching scheme in each layer, i.e., in

layer l the placement phase is defined by

|W̃
(l)
j,S | =

{

fl/
(

K−l+1
tl

)

F, for |S| = tl,

0, otherwise.
(23)

and the multicast signals are defined by ⊕j∈T W̃
(l)
dj ,T \{j} for

T ⊂ {l, . . . ,K} and |T | = tl + 1.

In general, any mtot ∈ [0,
∑K

i=1 ri] can be represented as
∑K

i=1 tifi where ti = x, for i = [y], ty = x − 1 + α, ti =
x − 1, for i = {y + 1, . . . ,K − x + 1}, ti = K − i + 1, for

i = {K − x+2, . . . ,K}, for some x ∈ [K], y ∈ [K − x+1]
and 0 < α < 1. In particular, we have

x ,































































1, 0 < mtot ≤
K
∑

i=1

fi,

...

j, (j−1)
K−j+1
∑

i=1

fi+
K
∑

i=K−j+2

(K−i+1)fi<mtot≤ j
K−j
∑

i=1

fi

... +
K
∑

i=K−j+1

(K−i+1)fi,

K, (K−1)f1+
K
∑

i=2

(K−i+1)fi<mtot≤
K
∑

i=1

ri.

(24)

and for a given x, we have y = b if

x

b−1
∑

i=1

fi + (x−1)

K−x+1
∑

i=b

fi+

K
∑

i=K−x+2

(K−i+1)fi<mtot≤

x
b

∑

i=1

fi + (x−1)
K−x+1
∑

i=b+1

fi+
K
∑

i=K−x+2

(K−i+1)fi. (25)

In turn, any mtot ∈ [0,
∑K

k=1 rk] can be represented as

mtot = x

y−1
∑

l=1

fl + (x − 1 + α)fy + (x − 1)
K−x+1
∑

l=y+1

fl+

K
∑

l=K−x+2

(K − l + 1)fl, (26)

and the corresponding minimum worst-case delivery load

under uncoded placement and linear delivery is given by

R∗
A,D(mtot, r)=

y−1
∑

l=1

K−l−x+1

x+ 1
fl+

K−x+1
∑

l=y+1

K−y−x+2

x
fl+

(

2(K−y)−x+3

x+ 1
−
(K−y+2)(x−1+α)

x(x+1)

)

fy. (27)

For example, for K = 3, the corner points of the delivery

load cache budget trade-off under uncoded placement in (22)

are defined as follows

R∗
A,D(mtot, r)=















































r1+r2+r3, for mtot = 0,

r2+r3−r1, for mtot=r1,

r1/2+r3−r2/2, for mtot=r2,

r1/2+r2/2, for mtot=r3,

r2/2−r1/6, for mtot=r1+r3,

r1/3, for mtot=r2+r3,

0, for mtot=r1+r2+r3,

(28)

which are illustrated in Fig. 2, for r = [0.5, 0.7, 1].

Next, we extend the lower bound on the delivery load for

systems with fixed cache sizes in [28, Theorem 2] to systems

with cache memory budget.

Proposition 1. (Extension of [28, Theorem 2]) Given N ≥ K ,

the target rate vector r, and the total memory budget mtot ∈
[0,

∑K

k=1 rk], the infimum over all achievable delivery loads

R∗(mtot, r) is lower bounded by

min
m∈M(mtot,r)







max
U⊂[K]







∑

k∈U

rk −

N
∑

k∈U

mk

⌊N/|U|⌋













, (29)

where M(mtot, r) =
{

m
∣

∣ 0≤mk≤rk,
K
∑

k=1

mk = mtot

}

. �

For the three-user case, the cut-set bound can be simplified

as follows.

Corollary 1. Given K = 3, N ≥ 3, the target rate vector

r, and the total memory budget mtot ∈ [0,
∑K

k=1 rk], the

infimum over all achievable delivery loads R∗(mtot, r) is

lower bounded by

max

{ 3
∑

l=1

rl −
N

⌊N/3⌋
mtot,

⌊N/2⌋(r1 + r2) +Nr3
N + ⌊N/2⌋

−

N

N + ⌊N/2⌋
mtot,

1

3

(

3
∑

l=1

rl −mtot

)

}

. (30)

�

VI. DISCUSSION AND NUMERICAL RESULTS

In this section, we first consider systems with total cache

memory budget and present numerical examples that illustrate

the optimal solution of (20). Then, we consider systems with

fixed cache sizes and illustrate the gain achieved by our

caching scheme compared to the schemes proposed in [28].

A. Systems with Total Cache Memory Budget

In Fig. 2, we compare the achievable worst-case delivery

load R∗
A
(mtot, r) defined in Theorem 1 with the lower bound

on R∗(mtot, r) defined in Proposition 1, for K = N = 3 and

the target rates r = [0.5, 0.7, 1]. In particular, for K = 3 the
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Fig. 2. Comparing the delivery load R∗

A
(mtot, r) in Theorem 1 with the

cut-set bound in Proposition 1, for K = N = 3, and r = [0.5, 0.7, 1].

corner points of the achievable delivery load are defined in

(28) and the cut-set bound in (30) for N = 3 is

max

{

3
∑

l=1

rl−3mtot,
r1+r2+3r3−3mtot

4
,
1

3

(

3
∑

l=1

rl−mtot

)

}

. (31)

Remark 1. We observe that for large memory budget,
∑K

l=2 rl ≤ mtot ≤
∑K

l=1 rl, the cut-set bound can be achieved

and the delivery load R∗(mtot, r) =
1
K

(
∑K

l=1 rl−mtot

)

. �

Recall the notation fl = (rl − rl−1) and r0 = 0. Fig. 3

shows the optimal allocation for the users’ cache sizes that

correspond to the achievable delivery load in Fig. 2. From

Fig. 3, we observe the optimal memory allocation follows a

threshold policy. In particular, we have

• If mtot = αf1 and α ∈ [0, 1], then m =
[αf1/3, αf1/3, αf1/3].

• If mtot = f1+αf2 and α ∈ [0, 1], then m = [f1/3, f1/3+
αf2/2, f1/3+αf2/2].

• If mtot = f1 + f2 +αf3 and α ∈ [0, 1], then m =
[f1/3, f1/3+f2/2, f1/3+f2/2+αf3].

• If mtot = (1+α)f1+f2+f3 and α ∈ [0, 1], then m =
[(1+α)f1/3, (1+α)f1/3+f2/2, (1+α)f1/3+f2/2+f3].

• If mtot = 2f1+(1+α)f2+f3 and α ∈ [0, 1], then m =
[2f1/3, 2f1/3+(1+α)f2/2, 2f1/3+(1+α)f2/2+f3].

• If mtot = (2+α)f1+2f2+f3 and α ∈ [0, 1], then m =
[(2+α)f1/3, (2+α)f1/3+f2, (2+α)f1/3+f2+f3].

B. Systems with Fixed Cache Sizes

For systems with fixed cache sizes, we compare the delivery

load achieved by our scheme which performs joint design of

the memory allocation over the layers and the caching scheme,

with the two separation based schemes in [28]. In reference

[28], the memory allocation over the layers follows one of the

following heuristic methods:

1) Proportional cache allocation (PCA), where user k cache

size for layer l is defined as m
(l)
k = flmk/rk.
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Fig. 3. The memory allocation corresponding to the delivery load in Theorem
1 for r = [0.5, 0.7, 1].

2) Ordered cache allocation (OCA), where user k allocates

all of its cache to the first b layers if rb−1 < mk < rb.

In turn, in layer l, we have a caching system that consists

of K − l + 1 users with fixed cache sizes m
(l). Reference

[28] has proposed designing the caching scheme in each

layer separately, i.e., the multicast signals utilize the side-

information from one layer. In particular, in layer l, the cache

sizes m(l) are further divided into sublayers of equal size and

the MaddahAli-Niesen scheme is applied on each sublayer.

Additionally, reference [28] has formulated an optimization

problem in order to identify the optimal distribution of fl over

the sublayers. We refer to this scheme as the layered scheme.

Fig. 4 shows the delivery load obtained from (21), the

delivery load achieved by PCA/OCA combined with the

layered scheme, and the cut-set bound in [28, Theorem 2],

for K = N = 3, r = [0.5, 0.8, 1], and mk = 0.8mk+1. We

observe that the delivery load achieved by (21) is lower than

the one achieved by the schemes in [28]. This is attributed

to the fact that we not only jointly optimize the memory

allocation over the layers and the caching scheme, but also

exploit the multicast opportunities over all layers. However,

the performance improvement comes at the expense of higher

complexity, since the dimension of the optimization problem

in (21) grows exponentially with the number of users.

The next example illustrates the suboptimality of exploiting

the multicast opportunities in each layer separately.

Example 1. For m = [0.1, 0.2, 0.6] and r = [0.2, 0.3, 0.8],
the optimal solution of (21) is as follows

Placement phase:

• Layer 1: W
(1)
j is divided into subfiles W̃

(1)
j,{3} and

W̃
(1)
j,{1,2}, such that a

(1)
{3} = a

(1)
{1,2} = 0.1.

• Layer 2: W
(2)
j is stored at user 2, i.e., a

(2)
{2} = 0.1.

• Layer 3: W
(3)
j is stored at user 3, i.e., a

(3)
{3} = 0.5.

Delivery phase: We have two multicast transmissions X{1,3},d

and X{2,3},d, such that
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Fig. 4. Comparing the delivery load R∗

A,D
(m, r) obtained from (21), the

delivery load achieved by the two schemes in [28], and the cut-set bound
[28, Theorem 2], for K = N = 3, r = [0.5, 0.8, 1], and mk = 0.8mk+1.

• X{1,3},d = W
(1),{1,3}
d1,{3}

⊕ W
(1),{1,3}
d3,{1,2}

, where v{1,3} =

a
(1)
{3} = a

(1)
{1,2} = 0.1.

• X{2,3},d = W
(1),{2,3}
d2,{3}

⊕ W
(2),{2,3}
d2,{2}

, where v{2,3} =

a
(1)
{3} = a

(2)
{2} = 0.1.

The optimal solution of (21) achieves the delivery load

R∗
A,D(m, r) = 0.2 compared to 0.2167 which is achieved

by exploiting only the intra-layer multicast opportunities. �

VII. CONCLUSION

In this paper, we have studied coded caching systems

with heterogeneous distortion requirements. In addition to

designing the caching scheme, the server allocates the sizes of

the cache memories at the end users, subject to a total cache

budget constraint over the set of all users. Assuming uncoded

placement and linear delivery policies, we have shown that

the problem of minimizing the worst-case delivery load can

be formulated as a linear program.

The optimal memory allocation has been shown to follow

a threshold policy. Furthermore, we have observed that our

solution matches the cut-set bound in the large total cache

memory budget region. As a byproduct, we have proposed a

novel caching scheme which, for fixed cache sizes, outper-

forms the state-of-art schemes [28] by exploiting the inter-

layer multicast opportunities and jointly designing the cache

contents and the partitioning of the caches over the layers.

APPENDIX A

PROOF OF THEOREM 1

In order to prove that the optimal solution of (20) achieves

the delivery load in Theorem 1, we first show the optimality of

uniform cache allocation in each layer, i.e., m
(l)
k = m(l), ∀k ∈

{l, . . . ,K}. Then, we show that the optimal memory alloca-

tion over the layers follows the threshold policy defined by

(24)-(26).

Next lemma shows the optimality of allocating equal cache

sizes in a caching system where the users request the same

number of bits from the desired files [2], which is equivalent

to equal distortion requirements at the users [28].

Lemma 1. For a caching system with K users, N ≥ K files,

and cache memory budget mtot ∈ [0,K], the minimum worst-

case delivery load under uncoded placement

R∗
A(mtot) = max

j∈[K]

{

2K − j + 1

j + 1
−

(K + 1)mtot

j(j + 1)

}

, (32)

which is achieved by uniform memory allocation and the

MaddahAli-Niesen caching scheme [2].

Proof. For any memory allocation m = [m1, . . . ,mK ],

R∗
A(m) ≥ max

λ0∈R,λk≥0
− λ0 −

K
∑

k=1

mkλk (33a)

subject to λ0+
∑

k∈S

λk+
K−|S|

|S|+1
≥ 0, ∀S⊂ [K], (33b)

which is obtained by considering the average cut in the lower

bound under uncoded placement in [22, Theorem 1]. In turn,

by considering λk = λ, ∀k ∈ [K], we get

R∗
A(mtot)≥ max

λ≥0
min

j∈{0,...,K}

{

K − j

j + 1
− λ(j −mtot)

}

, (34)

= max
j∈[K]

{

2K − j + 1

j + 1
−

(K + 1)mtot

j(j + 1)

}

, (35)

where mtot =
∑K

k=1mk.

Building on Lemma 1, given r and any memory allocation

m
(1), . . . ,m(K), the minimum worst-case delivery load under

uncoded placement, R∗
A
(m(1), . . . ,m(K), r) satisfies

R∗
A(m

(1), . . . ,m(K), r) ≥

K
∑

l=1

(rl − rl−1)

max
j∈[K−l+1]

{

2(K−l+1)−j+1

j + 1
−

(K−l+2)
K
∑

k=l

m
(l)
k

j(j + 1)

}

. (36)

Furthermore, this lower bound is achievable if we consider

m
(l)
k = m(l), ∀k ∈ {l, . . . ,K} and apply the MaddahAli-

Niesen caching scheme [2] on each layer. In turn, the

optimization problem in (20) simplifies to the problem of

allocating the memory over the layers, which is defined as

min
t1,...,tK

K
∑

l=1

χlfl (37a)

subject to

K
∑

l=1

tlfl ≤ mtot, (37b)

0 ≤ tl ≤ K − l + 1, (37c)



where m(l) = tlfl/(K − l + 1) and

χl, max
j∈[K−l+1]

{

2(K−l+1)−j+1

j + 1
−

(K−l+2)tl
j(j + 1)

}

. (38)

Finally, we can show that the optimal solution to (37) achieves

the delivery load in Theorem 1, by solving the dual of the

linear program in (37).
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