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Abstract— We consider an energy harvesting transmitter send-
ing status updates regarding a physical phenomenon it observes
to a receiver. Different from the existing literature, we consider
a scenario where the status updates carry information about
an independent message. The transmitter encodes this message
into the timings of the status updates. The receiver needs to
extract this encoded information, as well as update the status
of the observed phenomenon. The timings of the status updates,
therefore, determine both the age of information (AoI) and the
message rate (rate). We study the tradeoff between the achievable
message rate and the achievable average AoI. We propose several
achievable schemes and compare their rate-AoI performances.

I. INTRODUCTION

We consider an energy harvesting transmitter sending status
updates to a receiver via status update packets. Each status
update packet requires a unit of energy; and the transmitter
harvests energy stochastically over time, one unit at a time, at
random times.1 In order to minimize the age of information
(AoI), the transmitter needs to send frequent and regular (over
time) status updates, however, the frequency and regularity of
the updates are constrained by the stochastic energy arrival
process, which is known only causally at the transmitter.

In this paper, different from the existing literature, we
consider the scenario where the timings of the status updates
also carry an independent message; see Fig. 1. In order to
obtain a tractable formulation, we consider an abstraction
where the physical channel is noiseless and the transmitter has
a battery of unit size. Intuitively, as will be clarified shortly,
there is a tradeoff between the AoI and the rate of the message.
Our goal in this paper is to characterize this tradeoff.

For this scenario, under causal (i.e., online) knowledge of
energy arrivals, [1] has determined that, in order to minimize
the long-term average AoI, the transmitter needs to apply a
threshold based policy: There exists a fixed and deterministic
threshold τ0 such that if an energy arrives sooner than τ0
seconds since the last update, the transmitter waits until τ0
and sends the update packet; on the other hand, if it has been
more than τ0 seconds since the last update, the transmitter
sends an update packet right away when an energy arrives.

On the other hand, again for this scenario, [2] has considered
the information-theoretic capacity of this energy harvesting
channel. The main information-theoretic challenge arises due
to having a state-dependent channel (where the state is the

This work was supported by NSF Grants CCF 14-22111/14-22347, CNS
15-26608/15-26165.

1Energy requirements and energy harvests are normalized.
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Fig. 1. An energy harvesting transmitter with a finite-sized battery, that sends
status updates and independent information to a receiver.

energy availability), time-correlation introduced in the state
due to the existence of a battery at the transmitter where energy
can be saved and used later, and the unavailability of the state
information at the receiver. Reference [2] converts the problem
from regular channel uses to a timing channel and obtains the
capacity in terms of some auxiliary random variables using a
bits through queues approach as in [3].

Sending information necessarily requires the transmitter to
send out a packet after a random amount of time following
an energy arrival in [2], whereas minimizing AoI requires the
transmitter to apply a deterministic threshold based policy in
[1]. Note that in [1], the transmitter sends a packet either at
a deterministic time τ0 after an energy arrival, or right at the
time of an energy arrival, thus, it cannot send any rate with
the packet timings even though it minimizes the AoI. This is
the main source of the tension between AoI minimization and
information rate maximization; and is the subject of this paper.

In this paper, we first present a general tradeoff region be-
tween the achievable AoI and the achievable information rate.
We then consider the class of renewal policies in which the
system action depends only on the most recent transmission.
Within this class of policies, we first propose policies that
determine the next transmission instant as a function of the
time difference between the most recent energy arrival and the
most recent status update. We then consider simpler policies
which we call separable policies. These policies separate the
update decision and information transmission in an additive
manner: When an energy arrives, the transmitter decides when
to update, neglecting the information transmission; once the
transmitter decides to send an update, it then encodes the
message on top of that update timing. For all the policies,
we derive the average achievable AoI and the achievable rate.
We then compare the tradeoff regions of these policies. We
observe numerically that the first class of policies achieve
better tradeoff regions. We also observe that as the value of the
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Fig. 2. An example evolution of instantaneous AoI.

average energy arrival increases, policies perform similarly.
Related Work: Minimizing the AoI has been studied in many

different settings, including settings with no energy constraints
[4]–[13] and settings with energy constraints in offline and
online energy harvesting models [1], [14]–[17]. Energy har-
vesting communication systems have been extensively studied
in scheduling-theoretic and information-theoretic settings, for
example, offline scheduling in single-user and multi-user set-
tings have been considered in [18]–[26], online scheduling has
been considered in [20], [27]–[32], and information-theoretic
limits have been considered in [2], [33]–[36].

II. SYSTEM MODEL

We consider a noiseless binary energy harvesting channel
where the transmitter sends status updates and an independent
message simultaneously as in Fig. 1. The transmitter has a
unit size battery, i.e., B = 1. Energy arrivals are known
causally at the transmitter and are distributed according to an
i.i.d. Bernoulli distribution with parameter q, i.e., P[Ei = 1] =
1−P[Ei = 0] = q. Hence, the inter-arrival times between the
energy arrivals, denoted as τi ∈ {1, 2, · · · }, are geometric with
parameter q. Each transmission costs unit energy; thus, when
the transmitter sends an update, its battery is depleted. The
timings of the transmitted updates determine the average AoI
and the message rate.

The instantaneous AoI is given by

∆(t) = t− u(t) (1)

where u(t) is the time stamp of the latest received status update
packet and t is the current time. An example evolution of the
AoI is shown in Fig. 2. The average long-term AoI is

∆ = lim sup
n→∞

E

[∑n
j=1Qj∑n
j=1 Tj

]
(2)

= lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n
j=1 Tj

]
(3)

where Ti is the duration between two updates, Qj = T 2
j /2 is

the total accumulated age between two updates represented by
the area (see Fig. 2), and the expectation is over the energy
arrivals and possible randomness in the transmission decisions.
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Fig. 3. Sending information through a timing channel.

Then, the minimum AoI is given by

∆∗ = inf
π∈Π

∆ = inf
π∈Π

lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n
j=1 Tj

]
(4)

where Π is the set of all feasible policies. Since the transmitter
is equipped with a unit-sized battery and due to energy causal-
ity [18], we have Ti ≥ τi. Note that due to the memoryless
property of the geometric distribution, we assume without loss
of generality, that τi is the time from the instant of the previous
update and not the time from the instant of the previous energy
arrival.

To send information through the timings of the status up-
dates, we consider the model studied in [2, Section V.A]. Thus,
here, we assume the knowledge of the energy arrival instants
causally at the transmitter and the receiver. The information
in the time duration Ti is carried by the random variable
Vi ∈ {0, 1, · · · } where we have here Ti = τi + Vi, see Fig. 3.
The achievable rate of this timing channel is [2],

R = lim inf
n

sup
p(V n|τn)

I(Tn;V n|τn)∑n
i=1 E[Vi] + E[τi]

(5)

= lim inf
n

sup
p(V n|τn)

H(V n|τn)∑n
i=1 E[Vi] + E[τi]

(6)

where the second equality follows since H(V n|τn, Tn) = 0.
We denote the AoI-rate tradeoff region by the tuple

(AoI(r), r), where r is the achievable rate and AoI(r) is the
minimum achievable AoI given that a message rate of at least
r is achievable,

AoI(r) = inf
M

lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n
j=1 Tj

]
(7)

where M is defined as

M=

{
{Ti}∞i=1

∣∣∣∣∣Ti ≥ τi, lim inf
n

sup
p(V n|τn)

H(V n|τn)∑n
i=1 E[Vi] + E[τi]

≥ r

}
(8)

where V n denotes (V1, · · · , Vn) and similarly for τn. An
alternate characterization for the tradeoff region can also be
done using the tuple (α,R(α)) where the achievable AoI is
equal to α and R(α) is the maximum achievable information
rate given that the AoI is no more than α.
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III. ACHIEVABLE TRADEOFF REGIONS

In this section, we consider several achievable schemes. All
considered achievable schemes belong to the class of renewal
policies. A renewal policy is a policy in which the action Ti at
time i is a function of only the current energy arrival instant
τi. The long-term average AoI under renewal policies is,

∆ = lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n
j=1 Tj

]
=

E[T 2
i ]

2E[Ti]
(9)

which results from renewal reward theory [37, Theorem 3.6.1].
Since we use renewal policies and τi is i.i.d., hereafter, we drop
the subscript i in the random variables. Then, the maximum
achievable information rate in (6) reduces to,

R = max
p(v|τ)

H(V |τ)

E[V ] + E[τ ]
(10)

and the AoI in (9) reduces to

∆ =
E[T 2]

2E[T ]
=

E[(V + τ)2]

2E[V + τ ]
(11)

Next, we present our achievable schemes. In the first
scheme, information transmission is adapted to the timing of
energy arrivals: If it takes a long time for energy to arrive, the
transmitter tends to transmit less information and if energy ar-
rives early, the transmitter tends to transmit more information.
This scheme fully adapts to the timings of the energy arrivals,
but this comes at the cost of high computational complexity.
We then relax the adaptation into just two regions, divided by
a threshold c: If energy arrives in less than c slots, we transmit
the information using a geometric distribution with parameter
pb, and if energy arrives in more than c slots, we transmit
the information using another geometric random variable with
parameter pa. The choice of a geometric random variable for
V here and hereafter is motivated by the fact that it maximizes
the information rate when the energy arrival timings are known
at the receiver; see [2, Section V.A].

In the previous schemes, the instantaneous information rate
depends on the timings of energy arrivals. We next relax this
assumption and assume that the instantaneous information rate
is fixed and independent of timings of energy arrivals. We
call such policies separable policies. In these policies, the
transmitter has two separate decision blocks: The first block
is for the status update which takes the decision depending on
the timing of the energy arrival, and the second block is for
encoding the desired message on top of the timings of these
updates. This is similar in spirit to super-position coding. In
the first separable policy, the update decision is a threshold
based function inspired by [1]: if the energy arrives before a
threshold τ0, the update block decides to update at τ0 and
if the energy arrives after τ0, the update block decides to
update immediately. The information block does not generate
the update immediately, but adds a geometric random variable
to carry the information in the timing on top of the timing
decided by the update block. In the second separable policy,
which we call zero-wait policy, the update block decides to

update in the channel use immediately after an energy arrival.

A. Energy Timing Adaptive Transmission Policy (ETATP)
In this policy, the information which is carried in V is a

(random) function of the energy arrival realization τ . This is
the most general case under renewal policies. The optimal
tradeoff can be obtained by solving the following problem

min
p(v|τ)

E[(V + τ)2]

2E[V + τ ]

s.t.
H(V |τ)

E[V ] + E[τ ]
≥ r (12)

The maximum possible value for r is equal to r∗ =
maxp(v|τ)

H(V |τ)
E[V ]+E[τ ] . The solution of this problem can be found

by considering the following alternative problem which gives
the same tradeoff region

max
p(v|τ),m

H(V |τ)

m

s.t. E[(V + τ)2] ≤ 2αE[V + τ ]

E[V + τ ] = m (13)

For a fixed m, problem (13) is concave in p(v|τ) and can be
solved efficiently. Then, to obtain the entire tradeoff region,
we sweep over all possible values of the parameter α (which
are all possible values of the AoI). The solution for (13) is
found numerically by optimizing over all possible conditional
pmfs p(v|τ) for each value of m. Then, we use line search to
search for the optimal m. All this, has to be repeated for all
possible values of the AoI α. Finding the optimal solution for
(13) has a high complexity, hence, we propose the following
policy which reduces this complexity significantly, and at the
same time adapts to the timing of the energy arrivals to the
extent possible within this set of policies.

B. Simplified ETATP
In this policy, we simplify the form of the dependence of

the transmission on the timings of energy arrivals significantly.
The transmitter waits until an energy arrives, if the energy
takes more than c slots since the last update, we transmit the
information using a geometric random variable with probabil-
ity of success pb, otherwise the transmitter transmits the in-
formation using a geometric random variable with probability
of success pa, i.e., the transmitter chooses p(v|τ) as follows

p(v|τ) =

{
pb(1− pb)v−1, τ < c

pa(1− pa)v−1, τ ≥ c
, v = 1, 2, · · · (14)

In this case, pa, pb and c are the variables over which the
optimization is performed. The average achieved information
rate as a function of pa, pb and c can be obtained as,

R =

H2(pb)
pb

(1− (1− q)c) + H2(pa)
pa

(1− q)c

E[τ ] + E[V ]
(15)

where E[V ] is equal to

E[V ] =
(1− pb)
pb

(1− (1− q)c) +
(1− pa)

pa
(1− q)c (16)
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Now, we can calculate the average AoI with this policy as,

∆ =
E[(τ + V )2]

2E[τ + V ]
=

2−q
q2 + E[V 2] + 2E[τV ]

2E[τ ] + 2E[V ]
(17)

where we have E[V 2] as

E[V 2] =

(
2 + p2

b − 3pb
p2
b

)
(1− (1− q)c)

+

(
2 + p2

a − 3pa
p2
a

)
(1− q)c (18)

and E[τV ] as

E[τV ] =
(1− pb)
pb

(
1

q
(1− (1− q)c+1)− (c+ 1)(1− q)c

)
+

(1− pa)

pa

(
(1− q)c+1

q
+ c(1− q)c−1

)
(19)

This scheme is simpler than the general class of ETATP;
still, we need to search for the optimal pa, pb and c. We reduce
this complexity further in the next policy.

C. Threshold Based Transmission Policy

We now present the first separable policy. In this policy, we
assume that T = Z(τ)+V , where the information is still car-
ried only in V ; see Fig. 2. Z(τ) is the duration the transmitter
decides to wait in order to minimize the AoI, while V is the
duration the transmitter decides to wait to add information in
the timing of the update. Z(τ) and V are independent which
implies that H(V |Z(τ)) = H(V |τ) = H(V ). The duration
Z(τ) is determined according to a threshold policy as follows,

Z(τ) = τU(τ − τ0) + τ0U(τ0 − τ − 1) (20)

The optimal value of τ0 is yet to be determined and is
an optimization variable. The optimal value of τ0 is to be
calculated and, thus, known both at the transmitter and the
receiver; hence, this threshold policy is a deterministic policy.
This ensures that we still have H(V n|τn, Tn) = 0, which
is consistent with (6). We then choose V to be a geometric
random variable with parameter p. The tradeoff region can
then be written as,

min
T (τ),p

E[(Z(τ) + V )2]

2E[Z(τ) + V ]

s.t. Z(τ) ≥ τ

r ≤ H2(p)/p

(1− p)/p+ E[Z(τ)]
(21)

where r is a fixed positive number. The feasible values of r are
in [0, r∗] where r∗ is equal to r∗ = maxp∈[0,1]

H2(p)/p
(1−p)/p+E[τ ] .

This follows because the smallest value that Z(τ) can take is
equal to τ . The optimization problem in this case becomes a
function of only τ0 and p.

We now need to calculate E[Z(τ)] and E[Z2(τ)]. We
calculate E[Z(τ)] as follows,

E[Z(τ)] =(1− q)τ0 +
(1− q)τ0+1

q
+ τ0 (22)

and we calculate E[Z2(τ)] as follows,

E[Z2(τ)] =

(
2− 3q

q2

)
(1−q)τ0 + 2(τ0+1)(1−q)τ0

+ 2(τ0 + 1)
(1− q)τ0+1

q
+ τ2

0 (23)

Finally, we note that in this case E[V 2] is equal to,

E[V 2] =
2 + p2 − 3p

p2
(24)

Substituting these quantities in the above optimization problem
and solving for p and τ0 jointly gives the solution.

D. Zero-Wait Transmission Policy

This policy is similar to the threshold based policy, with
one difference: The update block does not wait after an energy
arrives, instead, it decides to update right away, i.e., Z(τ) = τ .
Hence, the tradeoff region can be obtained by solving,

min
p

E[(τ + V )2]

2E[τ + V ]

s.t. r ≤ H2(p)/p

(1− p)/p+ E[τ ]
(25)

We can then calculate E[(τ+V )2] = E[τ2+V 2+2V τ ], where
V and τ are independent as the message is independent of
the energy arrivals. Since τ is geometric E[τ2] = 2−q

q2 . This
optimization problem is a function of only a single variable p.
This problem is solved by line search over p ∈ [0, 1].

IV. NUMERICAL RESULTS

Here, we compare the tradeoff regions resulting from the
proposed schemes. We plot these regions in Figs. 4-6 for
different values of average energy arrivals, namely, q = 0.2,
q = 0.5 and q = 0.7. For low values of q, as for q = 0.2
in Fig. 4, there is a significant gap between the performance
of ETATP and the simplified schemes. For this value of q, in
most of the region, simplified ETATP performs better than the
threshold and zero-wait policies. As the value of q increases as
shown in Fig. 5 and Fig. 6, the gap between the performance
of the different policies decreases significantly. In Fig. 5, the
threshold and zero-wait policies overlap. In Fig. 6, simplified
ETATP, threshold and zero-wait policies overlap. In all cases,
zero-wait policy performs the worst. This is consistent with
early results e.g., [4], early results in the context of energy
harvesting e.g., [14], [15], and recent results [1], [16], [17],
where updating as soon as one can is not optimum.
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