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Abstract—This paper considers the problem of key manage-
ment in wireless networks. In particular, we investigate the effect
of dynamic key compromise and recovery on connectivity in
large networks. A queuing model with a finite buffer is used to
model the dynamics of key compromise. The exact distribution
of the fraction of keys compromised is obtained. The result of
the queuing analysis is used to determine the probability of
outage, where an outage occurs whenever instantaneous end-to-
end connectivity, in percolation sense, is not present. Numerical
results show that in order to obtain a low outage probability, it
is critical that key compromises are detected accurately, and that
the average key recovery rate has a weak influence on the outage
probability. Thus, for the same average key recovery rate the
system must be designed to have a high key recovery probability
rather than a large number of key recoveries per unit time with
a low key recovery probability.

I. INTRODUCTION

Wireless ad-hoc networks will undoubtedly have wide usage

in the near future due to their extensive range of potential

applications [1]. However, the broadcast nature of the wireless

medium makes it easy to eavesdrop upon ongoing commu-

nications. Providing information security in wireless ad-hoc

networks poses a considerable challenge because computa-

tionally expensive cryptographic schemes, such as public key

cryptography, may not be practical due to limited processing

capabilities of the communication nodes. Private or symmetric

key cryptography may be used, however, the distribution of

keys is a challenge, because it may not be possible to pre-

determine the neighborhood of each node, especially if the

nodes are mobile.

A significant research effort has been directed towards the

design and analysis of key distribution schemes for symmetric

key cryptography [2], [3], [4], and detection and revocation

of compromised keys [5]. Several key distribution schemes

have been proposed which aim to minimize the memory

and communication requirements of communication nodes

while ensuring that each link is secured with high probability.

Although the problems of key management have been studied

extensively for static networks, the dynamics of the key

compromise and recovery has received limited attention.

In this paper, we model the scenario where new link

compromises occur at each time-instant due to repeated attacks

on the network. Some of the compromised nodes may be

recovered through periodic network maintenance. The recov-

ery occurs with probability prec, which is the probability that

the link compromises are known and the network maintainer

is available. We present a simple queuing model with fi-

nite buffers to model time-varying key compromises. In this

setup, the queue stores compromised keys, which are serviced

when they are recovered. The effect of the number of key

compromises on end-to-end connectivity is captured by the

percolation threshold, which specifies the maximum fraction

of keys compromised such that connectivity is present in the

network, with high probability. The queuing model is used

to obtain the exact stationary distribution of the fraction of

links compromised. Using this distribution, we obtain the

outage probability where an outage occurs whenever end-to-

end connectivity is not present. We observe from the numerical

results that it is critical to detect key compromises with a

high probability, in order to obtain a low outage probability.

In particular, the average rate of key recovery can be mis-

leading and has a weak influence on the outage probability.

In related work, percolation theory has been used to study

connectivity in the context of information theoretic secrecy,

in [6], where the concept of secrecy graph was introduced.

Connectivity with uncertain location of eavesdroppers and

correlated failures was considered in [7]. The impact of key

compromise on connectivity when keys are randomly pre-

distributed, was considered in [8]. However, a static network

was considered, while this paper considers time-varying key

compromises. Connectivity in networks with time-varying

links has been considered in [9], though not in the context

of security. Epidemic theory has been used to model the

spread of node compromises, perhaps through a virus or worm,

in wireless networks [10]. Although this model captures the

dynamics of the spread of node compromise, starting from

a single point of failure, it does not model the process of

repeated compromise and recovery.

It is worth reiterating that the goal of this work is to provide

a framework that captures both the time-varying security

failures and the geometry of the network, and characterize the

connectivity properties. This is accomplished by combining

ideas from queuing and percolation theories.

The remainder of the paper is organized as follows. In Sec-

tion II, the queuing model for dynamic key compromise and

recovery is presented, and the outage probability is defined. In

Section III, the exact stationary distribution of the fraction of

keys compromised is obtained. Numerical results are presented
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Fig. 1. (a) Failures in square lattice (b) Failures in a random graph

in Section IV. Section V concludes the paper.

II. MODEL AND FORMULATION

Let Ĝ = (φ, Ê) denote a geometric graph in R
d, where

φ = {xi} ⊂ R
d is the set of locations of legitimate nodes. Let

δ(x, y) = ‖x−y‖ denote a distance metric, which is assumed

to be Euclidean distance in this paper. Ê is the set of links in

the graph. The links in Ê are determined using the Gilbert disk

graph model, i.e., the link (x, y) ∈ Ê if δ(x, y) ≤ r, where the

distance threshold r ensures a minimum signal to noise ratio

at the receiver. Thus, Ê is the set of links over which reliable

communication is possible. Graph Ĝ can be a lattice graph,

where the legitimate nodes are located on the vertices of a

lattice, and each node is connected to its nearest neighbors.

An example is a square lattice in Z
2 with the distance threshold

of 1. Fig. 1 shows a square lattice where links l1, l2, l3 and

l4 have been compromised, and a random graph where links

l5, l6 and l7 have been compromised.

A secrecy graph G = (φ,E) is defined based on the

underlying geometric graph Ĝ, such that each link in the

secrecy graph is both reliable and secure. The secrecy graph

was defined in [6] in the context of information theoretic

secrecy, where link security is provided using channel coding.

In this paper, security of a link is ensured using private

key cryptography. Link (x, y) is secure if the nodes located

at x and y share a private key. We assume a secret key

distribution mechanism so that each link is secured using a

separate cryptographic key. An example of such a scheme is a

random key pre-distribution scheme [2], [3], where each node

is assigned K cryptographic keys at random out of a pool of

N keys. Then, the probability that two nodes share at least

one cryptographic key is

pkey = 1 −

(
N−K

K

)

(
N
K

) (1)

if K ≤ N/2 and pkey = 1 otherwise. It is assumed that

if two nodes share a key through the key pre-distribution

scheme, they set up a unique key to secure the link for future

use. Hence, all links in the secrecy graph have unique private

keys associated with them. For simplicity, we will assume that

K > N/2, so that pkey = 1, throughout the analysis. We will

observe later in the paper that, if K ≤ N/2, the effect of

pkey < 1 can be incorporated into the analysis.

We will focus on the key compromises in secrecy graph

G = (φ,E). We assume that the adversary can overhear

communication between nodes and perform cryptanalysis to

identify the secret keys. Further, we assume that an intrusion

detection scheme exists, e.g. in [11], which identifies the

compromised keys.

A. Dynamic key compromise and recovery

We consider a network G(L) = (φ(L), E(L)) with L links.

Key compromise and recovery are assumed to occur at discrete

time instants. At time k, adversaries are able to compromise

A
(L)
k links in the network, where the compromised keys

are chosen independently. The model is valid, for example,

when the network is localized and the adversary can listen to

communication over all the links, and hence, compromise links

at random through cryptanalysis. In Section III-B, we will

discuss a model with correlated failures, which is similar to

the model considered in [7]. A static scenario was considered

in [7], whereas this paper considers time-varying failures and

recoveries.

At time k = mT , the network maintainer can recover a

maximum of B
(L)
mT compromised links, where T is a positive

integer and m ∈ N. The underlying assumption is that the link

compromises can be detected reliably so that key recovery

is possible. The uncertainty in key recovery is modeled by

assuming a distribution on B
(L)
mT . We assume that no links are

recovered at other time instants, i.e., BmT+l
.
= 0 if 0 < l < T .

{A
(L)
k } and {B

(L)
mT } are assumed to be i.i.d. and independent

of each other. Their distributions are assumed to be known to

the system designer.

An example of this model would be a wireless network

which is maintained at a specific time each day. Every hour,

certain number of the links may be compromised due to attacks

by adversaries. Then, T = 24, {A
(L)
k } would represent the

number of links compromised per hour and {B
(L)
mT } would

represent the number of links that are recovered per day. The

number of compromised links at time k is denoted by C
(L)
k .

C
(L)
k is given by the recursive equation

C
(L)
k = min(L, (C

(L)
k−1 + A

(L)
k − B

(L)
k )+) (2)

where (x)+
.
= max(0, x). The minimum in (2) is due to

the fact that the number of compromised links cannot exceed

L. Note that the (2) is similar to the update equation for a

queuing system. Notice that here we consider a sequence of

graphs G
(L)
k = (φ(L), E

(L)
k ), where E

(L)
k is the set of non-

compromised links at time k.

B. Percolation Threshold and Outage Probability

The concept of percolation was introduced by Broadbent

and Hammersley [12], to model the diffusion process in

materials. They modeled porosity of materials using regular

lattices, where each node is present with a certain probability

to indicate whether the flow of liquid is blocked or not.
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We consider a bond percolation problem where each link

is present with probability p. Percolation is said to occur if

an infinite connected component exists in the corresponding

graph. It was shown that a phase transition exists, i.e., there

exists a critical threshold, below which all components are

finite almost surely, and above which an infinite component

exists almost surely. Let us denote the number of nodes in the

component containing the origin by N0. Then, the percolation

probability is defined as

θ(p) = P (N0 = ∞). (3)

The percolation threshold is defined as [13]

pc = sup{p : θ(p) = 0}. (4)

Roughly, pc is the largest value of p for which an infinite

component does not exist in the lattice. In other words, for

any p > pc, the lattice will have an infinite component

containing the origin, almost surely. Percolation threshold

exists for geometric graphs and secrecy graphs as well.

Note that the percolation threshold is defined in (4) for a

static network. However, in the previous section, we described

a dynamic scenario where connectivity in the graph is time-

varying. In order to capture the dynamics of connectivity, we

define an outage event. An outage is declared at time k if the

graph does not have end-to-end connectivity, in the sense of

percolation. For a large network (L → ∞), let the fraction of

keys compromised, in the steady state (k → ∞), be denoted

by C, assuming that a stationary distribution exists. Then,

an outage occurs whenever 1 − C < pc, where pc is the

percolation threshold for a given geometric graph. Therefore,

Poutage = Pr{C > 1 − pc}. (5)

Notice that the distribution of C depends on the queuing pro-

cess, while the percolation threshold depends on the geometry

of the network, and the assumptions on key compromise and

recovery processes, e.g., whether they are i.i.d. or correlated.

Here, the assumption is that node compromise and recovery

occur at a much slower time scale compared to the time scale

over which routing algorithms converge after change in net-

work topology. Thus, (5) is the probability that instantaneous

connectivity is not present in the secrecy graph.

Note that the model presented in this paper holds for any

geometric graph, and the outage probability can be obtained

whenever percolation threshold is known. In particular, perco-

lation thresholds are known for triangular and square lattices,

and outage probabilities for these lattices are obtained in

Section IV.

III. CONNECTIVITY WITH DYNAMIC KEY COMPROMISE

AND RECOVERY

In this section, we present an exact solution for the sta-

tionary distribution of the fraction of keys compromised in

the limit L → ∞, assuming that the key compromise and

recovery processes scale with L. We note that the appropriate

scaling along with the inherent discrete nature of the problem

allows for the exact solution. The outage probability defined

in (5) can be obtained using the stationary distribution.

A. Stationary distribution of the fraction of key compromises

We consider a sequence of graphs G(L) = (φ(L), E(L)),
indexed by the number of links L ∈ L0Z

+, where L0 is

a positive integer. It is assumed that the number of key

compromises and recoveries scale with L,

A
(L)
k = LAk (6)

B
(L)
k = LBk (7)

for some {Ak} and {Bk} and L ∈ L0Z
+. Ak is the fraction

of links compromised at time k, and it has a distribution fA.

Bk is the fraction of links recovered at time k, and it has a

distribution fB when k = mT . Bk is identically zero when

k 6= mT . Since we have assumed that A
(L)
k and B

(L)
k scale

linearly with L, the fraction of keys compromised at time k

is obtained as C̃k
.
= C̃

(L)
k = C

(L)
k /L.

We focus on the time instants k = mT , where m ∈ N.

Define Dm
.
=

∑T−1
i=0 AmT−i − BmT and Cm

.
= C̃mT . fD

denotes the distribution of Dm. Then, the dynamics at k = mT
is given by,

Cm = min(1, (Cm−1 + Dm)+). (8)

Let us assume that a stationary distribution exists for {Cm}
and let the corresponding random variable be denoted by C.

The stationary distribution of {Cm} can be obtained using

the standard technique of spectral factorization [14], which

does not assume a finite buffer, corresponding to a finite

network. Notice that the equation in (8) is linear if 0 ≤
Cm−1 + Dm ≤ 1. Then the distribution of C can be written

as

fC(c) =

{
(fC ∗ fD)(c), 0 ≤ c ≤ 1
0, otherwise

(9)

The main difficulty here is that (9) is non-linear. It can be

made linear by introducing an auxiliary variable C− with

distribution fC− so that,

fC(c) + fC−(c) = (fC ∗ fD)(c). (10)

Taking the z-transform of both sides, and re-arranging the

terms, we obtain

Φ−(z)

Φ(z)
= D(z) − 1. (11)

The transforms Φ−(z) and Φ(z) can be obtained by spectral

factorization of D(z) − 1 [14], and Φ(z) can be inverted to

obtain the steady state distribution of C. The limitation of this

approach is that depending on the discretization, one may have

to factorize a high degree polynomial and invert a complicated

rational function. We now present a solution based on a system

of linear equations, which overcomes this limitation, and is

simpler and more intuitive. This method is valid as long as

the assumption of linear scaling on A
(L)
k and B

(L)
k holds.

Numerical results in the next section are obtained using this

method.

Notice that C̃
(L)
k takes discrete values and the same dis-

cretization can be used for all L ∈ L0Z
+ due to the linear
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scaling of A
(L)
k and B

(L)
k . In particular, for L = L0, the range

of C̃
(L0)
k consists of (L0 + 1) values in the set

{0, 1/L0, 2/L0, . . . , 1} (12)

Let the probability mass function (p.m.f.) of C is denoted by

p
.
= (p0, p1, . . . , pL0+1). Then, the stationary distribution, if

it exists, must satisfy,

p0 =

L0+1∑

j=0

pj(
∑

k≤0

fD(−j + k)) (13)

pn =

L0+1∑

j=0

pjfD(n − j), 0 < n < L0 + 1 (14)

pL0+1 =

L0+1∑

j=0

pj(
∑

k≥0

fD(L0 + 1 − j + k)) (15)

These equations can be written compactly as

p = Hp. (16)

Thus, p is the eigenvector of H corresponding to eigenvalue

1. The discrete random process {Cm} is a Finite State Markov

Chain (FSMC). The states of the FSMC can be shown to be

positive recurrent, and hence, a stationary distribution exists

and it can be obtained by solving (16). The steady state

distribution for k = mT + l for 0 < l < T can be obtained as

fCl
(c) = (fC ∗ fA ∗ fA ∗ . . . ∗ fA

︸ ︷︷ ︸

l times

)(c). (17)

Notice that the stationary distribution of the fraction of

compromised keys is independent of the size of the network.

Clearly, the steady state distribution exists for the limiting case

L → ∞ and is identical to the distribution of C.

Now, the fraction of compromised links C can be related to

the percolation threshold to obtain the outage probability. Let

pc be the percolation threshold for a given geometric graph.

An outage occurs if 1 − C < pc, which indicates that the

network does not have instantaneous connectivity. The outage

probability is defined in (5) and it can be obtained using the

distribution of C. The definition of outage probability com-

bines two different aspects of the network: time-varying fail-

ures and recoveries through the queuing model, and geometry

of the network through the percolation threshold. From a pure

queuing perspective, we have a finite buffer, and the outage

occurs whenever the queue length is larger than a fraction

of the buffer size. This is motivated by the physical model

of the network where the fraction of link compromises must

not exceed a certain constant so that connectivity is present.

From the percolation perspective, we obtain probability of

instantaneous connectivity where the number of compromised

keys evolves according to a queuing equation.

We do not have a closed form expression for the outage

probability, although it can be obtained by solving for the

distribution of C using (16). In Section IV, we will present

numerical results to characterize the behavior of outage prob-

ability. We also note that we can obtain the exact distribution

of the fraction of compromised links for a finite network,

although the results from percolation theory will no longer

hold. A heuristic definition of outage can be used in that case.

So far we have assumed that the key distribution mechanism

successfully secures all the links and pkey = 1. The following

remark shows how the situation with pkey < 1 can be handled.

Remark 1. If the probability that two nodes share a private

key pkey < 1, an outage in instantaneous connectivity occurs

when pkey(1−C) < pc, and hence, the analysis in this section

holds with pc replaced by pc/pkey . Clearly, if pkey < pc,

Poutage = 1, i.e., connectivity does not exist even if there are

no key compromises.

B. Correlated failures in square lattices

Now, we present a simple model for correlated failures in a

square lattice to show how our approach may be extended to a

more general scenario where correlated failures may occur. We

consider a square lattice shown in Fig. 2, where a legitimate

node is present at each vertex of the lattice. Each node is

connected to its nearest neighbors. It is assumed that each

square region may contain an adversary. An adversary node

results in correlated node or link failures in the lattice. For

example, adversary node X1 in Fig. 2 results in the failure of

all the links of nodes a, b, c and d. Thus, the link compromises

are correlated. This can also be considered as a correlated node

failure where nodes a, b, c and d fail together. This can model

physical capture of adjacent nodes, jamming by an active

adversary, or eavesdropping and cryptanalysis carried out by

a computationally powerful adversary. This approach can be

extended to consider adversaries that lead to arbitrary node

failures, or more powerful adversaries. For example, adversary

node X2 in Fig. 2 results in the failure of all nodes located

on the vertices of the four squares around it.

Let L be the total number of square regions in the network.

At time k, A
(L)
k new adversaries appear in the network and

are placed independently, and at time k = mT , failures

corresponding to B
(L)
mT adversaries are recovered. The queue

is used to store the number of adversaries in the system. If

{A
(L)
k } and {B

(L)
mT } are i.i.d., and we assume a linear scaling

in L, we can use the results presented above to obtain the

stationary distribution of the fraction of square regions that

have an adversary. The percolation thresholds corresponding

to these models of correlated failures are not known. Estimates

of percolation thresholds for the model discussed above were

obtained in [7], through simulations, and the outage probability

can be estimated using those results. For example, if adversary

nodes are similar to the adversary node X1 in Fig. 2, and lead

to failures of four nodes around them, the critical value of the

fraction of squares containing an adversary was estimated as

0.163.

For arbitrary correlated failures, more intricate models that

combine queuing models and percolation analysis are needed.

Such models are beyond the scope of this paper, and will be

explored in our future work.

1146



d

2

X1

Compromised node

Adversary

ba

c

X

Fig. 2. Correlated failures in a square lattice

IV. NUMERICAL RESULTS

We now present numerical results on the outage probability.

The stationary distribution of the fraction of keys compromised

C is determined by solving (16). We plot the complementary

cumulative distribution function (CCDF) of C for various

parameters. The CCDF can be used to obtain the outage

probability Pr{C > 1 − pc}, where pc is the percolation

threshold for the specific graph.

The distribution of C can be obtained for a general distri-

butions fA and fB . For the numerical results, the distribution

of Ak was assumed to be

Ak =







0, w.p. 0.8
0.001α, w.p. 0.1
0.002α, w.p. 0.1

(18)

for α > 0. It was assumed that BmT ∈ {0, Bmax}, and

BmT = Bmax w.p. prec, i.e., probability of recovery. prec

is the probability that up to Bmax compromised keys can be

recovered successfully. With probability 1− prec the recovery

of compromised keys fails completely. A discretization corre-

sponding to L0 = 103 was assumed throughout.

Fig. 3 shows the CCDF of C for α = 5, Bmax = 0.04
and various values of prec. The values of 1 − pc for square

and triangular lattices are shown in the figure [15]. Here

TE[Ak] = 0.36, and hence, we must have prec > 0.9 to ensure

that E[BmT ] > E[Ak]. Notice that a relatively high value of

prec is required for obtaining a low outage probability. For

example, for both the square and triangular lattices, the outage

probability is more than 0.4 if prec = 0.93. A target outage

probability of 10−4 requires prec = 0.999, while prec = 0.99
suffices for the triangular lattice. It was expected that a value

larger than 0.9 would be needed for obtaining a low outage

probability, however, the numerical results show that prec is

required to be fairly close to 1. This result shows that it is

critical that the key compromises are detected and recovered

with high probability. Fig. 2 shows that the outage probability

is far more sensitive to the probability of key recovery rather

than the average rate of recovery. Thus, the average rate of

key recovery is not a good metric if outage probability must

be reduced. Similarly, Fig. 3 shows the effect of scaling the

network for the same compromise and recovery processes,

where the outage probability was expected to change with

scaling, but not dramatically. The intuition obtained from these

results is different than what one would obtain from a simple
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Fig. 3. Effect of prec on CCDF of fraction of keys compromised C

queuing analysis which ignores the geometry of the network.

Such an analysis would perhaps require that the value of C
be small.

In Fig. 3, Bmax is kept constant, and hence, both prec and

E[BmT ] increase with increase in prec. We now explore the

effect of reliability in recovery of compromised links prec on

the outage probability when the average number of recovered

keys E[BmT ] remains constant. Fig. 4 shows the CCDF of

C for α = 5. Various combinations of Bmax and prec were

chosen so that the average number of recovered keys was kept

fixed at E[BmT ] = 0.36. Therefore, the same number of keys

can be recovered on the average, in all the cases, and the

amount of resources spent on key recovery is the same, on the

average. The figure shows that for a fixed E[BmT ], an increase

in the recovery probability prec results in a significantly lower

outage probability. For prec = 0.792, the outage probability

is more than 10−2 for both the square and triangular lattices,

while for prec = 0.99, the outage probability for the square

and triangular lattices is below 10−3 and 10−4, respectively.

Thus, while the average number of recovered keys has a weak

influence on the outage probability, the recovery probability

prec influences the outage probability very strongly.

Fig. 5 shows the effect of scaling of key compromise and

recovery processes on the outage probability. The scaling was

obtained by choosing different values of α, and choosing

Bmax = 0.008α. Thus, the ratio E[Ak]/E[BmT ] was kept

fixed, while the fraction of keys compromised or recovered

scales with α. prec was chosen to be 0.95. As α increases, the

variability in links compromised or recovered increases and

it is expected that the outage probability will increase. The

increase in outage probability is substantial; as α is increased

from 1 to 2, the outage probability for the triangular lattice

increases by almost two order of magnitude. Thus, if the

number of keys compromised per time unit remains the same,

doubling the size of the network can dramatically reduce the
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Fig. 4. Effect of prec on CCDF of fraction of keys compromised C for
fixed E[BmT ]

outage probability. This also indicates that a smaller network

will need a much smaller ratio of E[Ak]/E[BmT ] compared

to a larger network.

V. CONCLUSION

We have introduced a framework that models the dynamics

of key compromise and recovery in a wireless network. The

dynamic behavior was captured using a queuing model with

a finite buffer, and the exact stationary distribution of the

fraction of keys compromised was found. In particular, we

modeled the uncertainty in the recovery of compromised keys.

Outage probability was defined in terms of connectivity in

large networks. The framework presented in this paper can

also be used to model time-varying failures in a non-security

setup. Numerical results showed that in order to obtain a low

outage probability, recovery probability of compromised keys

must be high. It was shown that the first order metric of

average number of recovered keys is not sufficient. In this

paper, we have used an i.i.d. model for both key compromise

and recovery. A more realistic model will capture the spatial

dependence of compromises in terms of correlated failure and

recovery, and will be considered in our future work.
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