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Abstract—In this work, we investigate secret key generation
from channel states. We point out, by means of a packet-delay-
based attack, that observing its own channel states is not the
only way an adversary can learn about the channel states of the
legitimate communicating parties. The attack suggests that it is
not secure to transmit data via the channel whose states generate
secret keys. However, not using the channel at all would result in
a waste of bandwidth. Hence, we propose using this channel to
transmit the bits needed to reconcile the channel state estimates
at the transmitter and the receiver. This is a necessary step in
secret key generation that required a separate channel in previous
work. Although the scheme proposed here in effect prohibits the
use of an adaptive transmitter, we show, for the Rayleigh fading
channel, that a decent key rate that outperforms existing schemes
is obtained. This is due to the fact that collection of the channel
state information and transmission of the reconciliation bits are
performed concurrently rather than via time sharing.

I. INTRODUCTION

Cryptography is the most widely used means of secure com-
munication today. Yet, alternatives to securing communication
links are of interest since the security guarantees offered by
cryptography rely on the absence of known efficient attacks
against these schemes. There are several alternatives proposed
to date which use the physical medium to provide means to
generate secret keys. In this work, we shall investigate one,
which generates a secret key from the channel states of a
wireless link [1].

The approach of generating a secret key from channel states
is based on the following assumptions: Let hi,j denote the
channel gain of a wireless communication link from node i to
node j. Then:

1) hi,j ≈ hj,i.
2) It is difficult for an eavesdropper to compute hi,j or hj,i.

The first assumption is usually justified from the fact that the
propagation of electromagnetic (EM) wave is reciprocal [1].
If the frequency and time at which node i transmits is close
to the frequency and time at which node j transmits, then the
channel gain observed by i should be close to that observed
by node j.

The second assumption needs a closer examination. This as-
sumption is usually justified from the experiment observation
that in an environment with many reflecting surfaces for the
EM wave, if the distance between the eavesdropper and node

i, j is more than the wavelength of the EM wave, the channel
state of the eavesdropper channel at a certain time instance
is not highly correlated with hi,j and hj,i at the same time
instance [1]–[4]. However, it should noted that observing its
own channel states is not the only way that the eavesdropper
can learn about hi,j , hj,i. Usually, the channel state estimates
are not kept secret at the legitimate nodes since they are not the
actual transmission data and are usually revealed to the users
as diagnosis information. Later, we will see another example
where the eavesdropper can learn the channel states hi,j , hj,i

by inspecting packet delays, which are also not kept secret
in general. Finally, if the environment is relatively static, the
eavesdropper can potentially measure the channel states of
the environment beforehand as a function of the location of
the communication parties. In this case, it is possible for the
eavesdropper to determine the channel gains observed by node
i and j from their locations, which can be identified, say, via
satellites. To prevent these potential leaks, it is desirable for the
communication environment to be constantly changing, so that
it becomes computationally challenging for the eavesdropper
to compute the propagation paths of EM waves. By the same
token, the secret key is likely to be generated from the small-
scale fluctuation of the channel states, which is more difficult
for the eavesdropper to track than the large scale fluctuation
of the channel states. Yet, this brings in another problem,
namely the accuracy of the assumption on channel reciprocity.
Recall that node i and j must generate the same secret key
from the hi,j and hj,i. When small scale fluctuations are
considered, even a small difference in hi,j and hj,i can become
problematic from the viewpoint of generating the common key.
This can potentially lead to more communication overhead
required to reconcile the difference between hi,j and hj,i and
limit the secret-key rate.

The impact of this communication overhead has received
relatively little attention in the past. In [2]–[4], the need to
transmit these reconciliation bits was avoided by aggressively
reducing the key rate. The motivation therein was to avoid the
need to authenticate these bits. References [2], [3] proposed to
use the channel states to generate secret key if their amplitude
exceed certain thresholds for a consecutive period of channel
uses. Reference [4] proposed to use the channel states to
generate secret key if deep fading occurs. Clearly, if the
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adversary actively introduces deep fading, for example, by
obscuring the antennas of legitimate communicating parties,
this approach becomes problematic. In all these works, the
generated secret key is short (128 -512 bits) and has to be
used along with block ciphers to encrypt data streams, whose
security again relies on the absence of known attacks. In
[5], [6], it is assumed that hi,j = hj,i exactly. In most
previous work in key generation, see [7], [8] for example,
the standard approach is to assume the existence of another
public discussion link, which is then used to transmit the
reconciliation bits. In [9] and [10], it is assumed that these
bits are transmitted over a separate wiretap channel.

In this work, we investigate the secret key generation
problem if the reconciliation bits are sent over the same
communication link that provides the channel states for secret
key generation. Doing so is motivated by three reasons: (1)
The channel state usually fluctuates at a rate that is slower
than the communication rate. Hence there is spare bandwidth
that can be utilized to transmit these bits. (2) Previous efforts
[7], [9], [10] require a separate communication link to transmit
these communication overheads, which may not be available or
desirable in practice. (3) As we will demonstrate in Section III,
this excess bandwidth mentioned in (1) is not useful for
transmitting information, even public data, due to the potential
for compromised security of the communication link.

The main contribution of this work is to derive the achiev-
able secret-key rate for the above scheme. We first model
the communication link as a wiretap channel with causal side
information at the transmitter and the receiver in Section II. In
Section IV, we provide the proof of the achievable secret-key
rate. In Section V, we evaluate this rate for the i.i.d. Rayleigh
fading case and provide numerical results which show that the
rate we derived compares favorably to alternative schemes.

II. SYSTEM MODEL

In this section, we describe the channel we use to model
the communication link. To make the problem tractable, we
assume that the current channel state is estimated by the trans-
mitter and the receiver before each use of the communication
link. Hence, before each use of the link, the transmitter and the
receiver has their own estimates of the current channel state
(but not future channel states). The communication link, with
an eavesdropper present, thus is modeled as wiretap channel
with causal side information, as shown in Figure 1. In this
model, node 1 wants to send a confidential message W to node
2 over n channel uses through a memoryless wiretap channel.
The state of the wiretap channel is denoted by {R, S}. R is
known by node 1 and S is known by node 2 up to the current
channel use. Let Xn denote the signals transmitted by node
1. Y n denotes the signals received by node 2. Zn denotes the
signals received by the eavesdropper. The channel description
is given by:

Pr (Y, Z|X, S, R) = Pr (Z|X) Pr (Y |X, Z, S, R) (1)

The situation corresponds to the case that the side information
available to the legitimate communicating parties does not
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Fig. 1. Wiretap Channel with Causal Side Information

include any channel state information of the eavesdropper,
which models a practical system.

The channel states R and S are modeled as outputs from a
i.i.d. random source. Hence we have:

Pr (Rn, Sn) =

n∏
i=1

Pr (Ri, Si) (2)

We also assume that given Rn and Sn, the randomness of the
channel is independent from the random source. Hence we
have:

Pr (Y n, Zn, Xn, Rn, Sn)

=Pr (Xn|Rn) Pr (Rn, Sn) Pr (Y n, Zn|Xn, Rn, Sn) (3)

The distribution Pr (Xn|Rn) in (3) is determined by the
encoding function. Let fi be the encoder of node 1 at the ith
channel use. Let Ri denote the sequence of R from the first to
the ith channel use. Let M1 be the local randomness available
to node 1. Then the encoder takes the following form:

Xi = fi(M1, R
i) (4)

After n channel uses, node i, i = 1, 2 try to agree on a secret
key. Let the key generated by node 1 and 2 be K and K̂
respectively. Let the generation function of node 1 be hi, i =
1, 2. Then

K = hi (Rn, Xn, M1) , K̂ = hi (Sn, Y n) (5)

The secret-key rate is defined as

Re = lim
n→∞

1

n
H (K) (6)

subject to the following two constraints:

lim
n→∞

1

n
I (K; Zn) = 0 (7)

lim
n→∞

Pr
(
K �= K̂

)
= 0 (8)

III. AN ATTACK USING PACKET DELAYS

The attack scheme is shown in Figure 2. For simplicity, we
assume nodes 1 and 2 are connected by an on-off channel,
whose state is denoted by S ∈ {0, 1} and is known causally
by both node 1 and 2. We assume each time S = 1, node 1
will transmit exactly one packet to node 2. When S = 0, node
2 will not be able to receive anything.
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To demonstrate the effectiveness of the attack, we consider
the setting where the adversary is not able to receive any signal
transmitted by node 1 at all. Yet, we shall see, even in this
scenario, it is still possible for the adversary to learn about
the channel states if it can trigger a sequence of packets for
node 1 to send to node 2 and examine the delay of these
packets. The delay is defined as the difference between the
time instance that a packet is transmitted by the adversary
and the time instance that this packet arrives at the adversary.
In this example, we assume the only uncertain component of
the delay is the time period that the packet stay in the queue
of node 1 waiting to be transmitted. In order not to overload
the queue of node 1, the adversary needs to pace its speed of
injecting packets. Here, we assume, upon receiving a packet
back from node 2, the adversary immediately sends a new
packet to node 1 to transmit. We assume the time it takes
for the new packet to arrive at the queue of node 1 is small
compared to the time it takes for node 1 and 2 to estimate
the channel state S. Hence when the channel estimation is
complete, the new packet is in the queue of node 1, ready to
be transmitted. Let the delay of packet i be denoted by ti. We
also assume that node 1 happen to receive no other packets
that are not originated from the adversary during this period.
We observe that

ti − ti−1 (9)

approximates the time period that packet i stays in the queue
after packet i−1 is sent. Let ti−ti−1 = k. Then, the adversary
can deduce that S takes values of k zeros during which packet
i stays in the queue, followed by 1 during which packet i is
transmitted. The adversary can use this side information to
reduce the search space when it tries to guess the secret key.

The example here, of course, is over simplified compared to
a real system. For example, the packet delay will be affected
by more factors, like transmission delays and delays caused
by other traffic unknown to the adversary. Yet, even in these
more complicated scenarios, the delay information will not be
entirely independent from the channel states.

The attack in this example can be avoided by not trans-
mitting unauthorized packets over the channel whose states
are used to generate secret key. However, in most current
implementations, the physical layer is oblivious to the origin of
a packet. This implies that to deploy schemes which generate
secret key from channel states, it entails not just a simple
modification of current system, but a careful re-examination
of different layers of the system.

If this is too costly, then a more conservative alternative is
that we do not transmit any packets over the channel whose
state is used to generate secret key. This implies a waste of
bandwidth. As mentioned in the introduction, usually the side
information available to node 1 is not exactly the same as
the side information available to node 2, and communication
overhead is required to reconcile their side information in
order for the two nodes to generate the same secret key. In
previous works, this communication overhead is transmitted
over a separate channel. In the next section, we investigate
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Adversary Triggered Traffic
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Fig. 2. Side Channel Attack

how to transmit it using the spare bandwidth of the channel
whose state has been used for secret key generation.

IV. ACHIEVABLE RATE

In this section, we derive the achievable secret-key rate
when the reconciliation bits are transmitted over the same
channel whose states generate the secret key. The rate is given
by the following theorem:
Theorem 1: For an auxiliary random variable U such that

U − R − S is a Markov chain, the following secret-key rate
is achievable:

max
Pr(X)

{
I (U ; S) + α [I (X ; Y |S)− I (X ; Z)]

+
}

+

max
Pr(X)

(1− α) [I (X ; Y, S)− I (X ; Z, R)]+ (10)

such that

I (U ; R)− I (U ; S) = αI (X ; Y |S) (11)

for 0 ≤ α < 1. Both terms in the achievable rate expression is
maximized over the following joint distribution, although they
may not share the same Pr(X):

Pr (X) Pr (R) Pr (U |R) Pr (S|R) (12)
Pr (Z|X) Pr (Y |X, Z, R, S) (13)

Remark 1: We explicitly choose a Pr(X) that is indepen-
dent of R. This means the transmitter is not using the side
information to increase the reliable transmission rate. This
greatly simplifies the computation of equivocation. It should
be noted that this choice can decrease the achievable rate
significantly in some channels [11, Figure 4]. Yet, in the
case of Gaussian i.i.d. Rayleigh fading channel, the rate loss
caused by not using transmitter side information is known to
be limited [12].

Proof: The proof is similar to [9]. The difference is that
the side information S and R are not known non-causally to
the communication parties as in [9]. Hence the communication
has to be divided into several blocks.

We assume the communication spans over m blocks. Each
block is composed of n channel uses. To simplify the notation,
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we use A to denote the signal A within one block. We use Ā

to denote the first αn components of A, and use Ã to denote
the remaining (1 − α)n components of A. We also use the
notation Ai to denote the signals A related to the ith block.

In each block, nodes 1 and 2 perform two tasks:
1) Collect channel state information and perform Wyner-

Ziv coding.
2) Transmit the bin index produced by Wyner-Ziv encoder

from the previous block.
We point out that since different blocks are entangled together,
the eavesdropper can potentially obtain more information by
processing all blocks jointly. The main trick is to show that
the equivocation can still be computed in a block by block
fashion if X is chosen to be independent from the transmitter
side information R.

The codebook is constructed as follows: Let δn be a positive
sequence such that limn→∞ δn = 0 and limn→∞ nδn =∞.

1) Codebook for U , denoted by CU : Sample 2n(I(U ;R)+δn)

i.i.d. sequences from Pr(U).
2) Codebook CX , which will be used to transmit the

Wyner-Ziv code bin index: Sample 2αn(I(X;Y |S)−δn)

i.i.d. sequences from Pr(X), each sequence has αn
components.

3) Codebook CW , which will be used to transmit the wire-
tap code: Sample 2(1−α)n(I(X;Y,S)−2δn) i.i.d. sequences
from Pr(X), which can be a different distribution from
the Pr(X) used to generate CX . Each sampled sequence
has (1− α)n components.

We next describe the encoding scheme: First we need to
define the encoders:

1) The source encoder: The encoder takes input Rn and
finds the first sequence Un which is jointly typical with
Rn.

2) The Wyner-Ziv encoder: The sequences in CU are di-
vided into 2n(I(U ;R)−I(U ;S)+2δn) bins. Each bin has
2n(I(U ;S)−δn) sequences. The encoder takes input Un

and output the index of the bin that contains Un.
3) The secret key generator: We choose U such that

I (U ; R)− I (U ; S) + 2δn = α (I (X ; Y |S)− δn)
(14)

The sequences in CU are divided into
2n(I(U ;S)+α[I(X;Y |S)−I(X;Z)]+−δn) bins. Each bin
has 2nα(min{I(X;Y |S),I(X;Z)}−δn) sequences. From
(14), it can be verified that the total number of
sequences of Un remains as 2n(I(U ;R)+δn). The
encoder takes input Un and outputs the index of the
bin that contains Un.

4) The wiretap encoder: The encoder is used only if
I(X ; Y, S) > I(X ; Z, R). The sequences in CW are
binned into 2(1−α)n(I(X;Y,S)−I(X;Z,R)−δn) bins. Each
bin contains 2(1−α)n(I(X;Z,R)−δn) sequences. The en-
coder takes input w and outputs one sequence contained
in the bin indexed by w, which is chosen according to
a uniform distribution over all sequences in the bin.

Wiretap Code

(1− α)n channel uses

Collect side information R and S

Send Φi−1

αn channel uses

Fig. 3. Channel uses breakdown in a block

At the end of the ith block, node 1 encodes Ri into Ui. It
then uses the Wyner-Ziv encoder to encode Ui into the Wyner-
Ziv bin index Φi. This index is then mapped to a sequence
X̄i+1 in CX , which is possible because of (14). The resulting
X̄i+1 is then transmitted during the first αn channel uses in
the (i + 1)th block.

If α < 1 and I(X ; Y, S) > I(X ; Z, R), in the remaining
(1−α)n channel uses, node 1 randomly generate wi uniformly
distributed over 1, ..., 2(1−α)n(I(X;Y,S)−I(X;Z,R)−δn) and en-
code it with the wiretap encoder. Node 1 then transmits the
encoder output X̃i in the remaining (1 − α)n channel uses.
The encoding scheme is summarized in Figure 3.

We next describe the decoding scheme: At the end of the
ith block, node 2 receives Yi,Si. It then compute X̄i from
them by finding a sequence in CX which is jointly typical
with Ȳi and S̃i. The sequence X̄i determines Φi−1. Node 2
then looks into the sequences in CU , which are included in
the bin indexed by Φi−1 and find the first sequence that is
jointly typical with Si−1. With high probability this sequence
is Ui−1.

If α < 1, node 2 will also find the sequence in CW that is
jointly typical with Ỹi. With high probability, the sequence is
X̃i.

We next describe the secret key generation process: From
the description of the decoding procedure, at the end of the ith
block, both node 1 and node 2 should know Ui−1. It should
also be able to deduce wi−1, which is determined by X̃i−1.
The secret key generated from i−1st block is denoted by ki−1

and is chosen as the output of the secret key generator ai−1,
along with wi−1 for i− 1 < m. km is assumed to be 1.

We next compute the equivocation rate: We use the notation
A

q
p to denote Ap,Ap+1, ...,Aq if p < q and empty otherwise.

Then the equivocation is given by:

H (km
1 |Z

m
1 ) = H

(
km−1
1 |Zm

1

)
(15)

=
m−1∑
i=1

H
(
ki|Z

i
1,Zi+1,Z

m
i+2, k

m
i+1

)
(16)

Each term inside the sum of (16) can be written as:

H
(
ki|Z

i
1,Zi+1,Z

m
i+2, k

m
i+1

)
(17)

≥H
(
ki|Z

i
1, X̄i,Zi+1,Z

m
i+2, k

m
i+1

)
(18)

=H
(
ki|X̄i, Z̃i,Zi+1,Z

m
i+2, k

m
i+1

)
(19)

=H
(
ki|Z̃i,Zi+1,Z

m
i+2, k

m
i+1

)
(20)

≥H
(
ki|Z̃i,Zi+1,Ri+1,Z

m
i+2, k

m
i+1

)
(21)
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=H
(
ki|Z̃i,Zi+1,Ri+1

)
(22)

=H
(
ai|Z̃i,Zi+1,Ri+1

)

+ H
(
wi|ai, Z̃i,Zi+1,Ri+1

)
(23)

In (19), we use the following Markov chain:

ki −
{
X̄i, Z̃i,Zi+1,Z

m
i+2, k

m
i+1

}
− {Zi−1

1 , Z̄i} (24)

Note that this chain holds because we are considering the
channel factorization (1), which implies that given X̄i, the
random variable Z̄i is independent from Ri, from which we
generate αi.

Equation (20) is due to the fact that ki, Z̃i, Zi+1, Z
m
i+2,

km
i+1 are independent from X̄i. This is because we choose X̄i

to be independent from Ri, from which we generate ai.
In (22), we use the following Markov chain:

ki −
{
Z̃i,Zi+1,Ri+1

}
−

{
Z

m
i+2, k

m
i+1

}
(25)

This is in part because ki+1 is generated from Ri+1, Z
m
i+2 is

related to ki only through Ri+1.
For the first term in (23), we have:

H
(
ai|Z̃i,Zi+1,Ri+1

)
(26)

=H (ai|Zi+1,Ri+1) (27)
=H (ai|Zi+1) = H

(
ai|Z̄i+1

)
(28)

Equation (28) is due to the fact that Ri+1 is independent
from αi and Zi+1. This, again is because we choose Xi to be
independent from Ri, from which we generate ai.

For the second term in (23), we have:

H
(
wi|ai, Z̃i,Zi+1,Ri+1

)
(29)

≥H
(
wi|Ri, ai, Z̃i,Zi+1,Ri+1

)
(30)

=H
(
wi|Ri, Z̃i

)
= H

(
wi|R̃i, Z̃i

)
(31)

Equation (28) can be written as:

H
(
ai|Z̄i+1

)
≥ H

(
ai|Z̄i+1

)
−H

(
ai|Ui, Z̄i+1

)
(32)

=I
(
Ui; ai|Z̄i+1

)
(33)

=H
(
Ui|Z̄i+1

)
−H

(
Ui|ai, Z̄i+1

)
(34)

≥H
(
Ui, Φi|Z̄i+1

)
− αnε (35)

=H
(
Ui|Φi, Z̄i+1

)
+ H

(
Φi|Z̄i+1

)
− αnε (36)

=H (Ui|Φi) + H
(
Φi|Z̄i+1

)
− αnε (37)

In particular, (35) is based on [9, Lemma 4]. Then as shown
by [9, Lemma 3], we have:

lim
n→∞

1

n
H (Ui|Φi) = I (U ; S) (38)

lim
n→∞

1

n
H

(
Φi|Z̄i+1

)
≥ α[I (X ; Y |S)− I (X ; Z)]+ (39)

Using the standard arguments for the wiretap channel [13],
it can be shown that (31) is lower bounded by:

H
(
X̃i

)
− I

(
X̃i; R̃i, Z̃i

)
(40)

And we have:

lim
n→∞

1

n
H

(
X̃i

)
= (1− α) I (X ; Y, S) (41)

lim
n→∞

1

n
I
(
X̃i; R̃i, Z̃i

)
= (1− α) I (X ; Z, R) (42)

By letting m, n →∞, we have the theorem.

V. RAYLEIGH FADING

The Rayleigh fading channel model is determined by the
following equations:

R = T + NR S = T (43)
Y = TX + NY Z = {QX, Q} (44)

where T is the channel state of the main channel. Q is
the channel state of the eavesdropper channel. T, NR, NY , Q
are all zero mean independent complex Gaussian random
variables. Without loss of generality, we assume T , Q and
NY has unit variance. The variance of NR is given by σ2

R.
Remark 2: We explicitly assume the eavesdropper observes

zero additive noise in (44) because in a real system, it is
difficult to estimate the average received SNR of the eaves-
dropper. We also assume in (44), the eavesdropper has perfect
knowledge of its channel state Q.

We choose Pr(X) as a complex Gaussian distribution with
zero mean and variance P . Define Z ′ = QX . Then (10) is
found to be:

I (U ; S) (45)

We can choose α = 1 and write (11) as:

I (U ; R)− I (U ; S) = I (X ; Y |S) (46)

Define A, such that

A = I(X ; Y |S) = E
[
log2

(
1 + |S|2P

)]
(47)

where the expectation is over the random variable S.
For I(U ; R) and I(U ; S), we obtain:

I (U ; R) = log2 πe
(
1 + σ2

R + σ2
U

)
− log2 πeσ2

U (48)
I (U ; S) = log2 πe

(
1 + σ2

R + σ2
U

)
− log2 πe

(
σ2

R + σ2
U

)
(49)

Let A denote the right hand side of (47), and choose σ2
U

such that I(U ; R)−I(U ; S) = A. Then the achievable rate is:

I (U ; S) = log2

(
1 +

1− 2−A

σ2
R

)
(50)

We next compare this secret-key rate with the following
time sharing scheme: The legitimate communication parties
spend (1 − α)n channel uses collect channel states, and the
remaining αn channel uses transmitting the communication
overhead require to reconcile their side information. During
these αn channel uses, the legitimate communicating parties
do not collect channel states.

Let the rate of the channel code during the remaining αn
channel uses be R0. Note that here, during the remaining αn
channel uses, we allow the transmitter to be adaptive in rate
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and power to the channel states it observed, R. Hence R0

is greater than A. Also, we ignore the transmission power
consumption required to estimate the channel states. Hence
the average power constraints of the channel code during the
remaining αn channel uses is P/α.

Following the same derivation in [9], the secret-key rate
achieved by this time sharing scheme is given by (1 −
α)I(U ; S), subject to the constraint:

(1 − α)(I(U ; R)− I(U ; S)) = αR0 (51)

It is difficult to evaluate R0, since the transmitter side
information R is not a deterministic function of the channel
state S [14]. However, we can give S to the transmitter as
genie information and derive an upper bound for R0, which
leads to an upper bound on the secret-key rate achievable using
this time sharing scheme. We denote this upper bound of R0

with R̄0, which is given by [12]:

R̄0 =

∫ +∞

0

log2 (1 + |t|P (t)) f|S|2 (t) dt (52)

where f|S|2(t) is the P.D.F. of |S|2. P (t) is the non-negative
power allocation function subject to the constraint:∫ +∞

0

P (t) f|S|2 (t) dt =
P

α
(53)

It then follows from [12] that R̄0 is given by:

R̄0 =
1

ln 2

∫ +∞

μ

1

t
e−tdt (54)

where 1/μ is the water level given by:∫ +∞

μ

(
1

μ
−

1

t

)
e−tdt =

P

α
(55)

For each possible time sharing factor α, we compute μ and the
corresponding achievable secret-key rate. Then we optimize
over α to maximize the secret-key rate.

The key rates achievable with these two schemes are
compared in Figure 4. We observe that the achievable rate
given by Theorem 1 is much larger than the rate given by
the time sharing scheme, even though with the latter adaptive
transmission is used.

VI. CONCLUSION

In this work, we have investigated the method of generating
a secret key from channel states. An attack based on packet
delays is provided to make the point that observing its channel
state is not the only way that an adversary can learn about
the channel states of the legitimate communicating parties,
and it is not safe to use the channel whose states generate
the secret key to transmit data. Hence, as an alternative, we
have proposed to send over this channel the communication
overhead required to reconcile the channel states learned by
the transmitter and the receiver. We have derived the secret key
generation rate for this scheme and evaluated the rate when the
channel state is i.i.d. Rayleigh fading. We have shown from
numerical results that the rate offered by the proposed scheme
outperforms the existing key generation scheme.
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